Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T04:14:05.175Z Has data issue: false hasContentIssue false

Astronomical constants: a survey of determined values(1)

Published online by Cambridge University Press:  14 August 2015

S. Böhme
Affiliation:
Astronomisches Rechen-Institut, Heidelberg.
W. Fricke
Affiliation:
Astronomisches Rechen-Institut, Heidelberg.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The authors give the main relations between fundamental and derived constants in analytical and numerical forms. Then, they enumerate and comment results of determinations of parameters of the figure and gravity field of the Earth, solar parallax, constant of lunar equation, the masses of planets, the constants of aberration, of nutation and of precession and give an extensive list of references.

Résumé. — Les auteurs donnent les principales relations liant les constantes fondamentales à celles qui en sont dérivées sous forme analytique et sous forme de tableaux de nombres. Puis, ils citent et commentent les résultats des déterminations des paramètres définissant la figure et le champ de gravité de la Terre, de la parallaxe solaire, de la constante de l'équation de la Lune, des masses des planètes et des constantes de l'aberration, de la nutation et de la précession. Ils donnent une importante bibliographie.

Zusammenfassung. — Verff, geben die hauptsächlichen Beziehungen zwischen den fundamentalen und den abgeleiteten Konstanten in analytischer und numerischer Form. Die Ergebnisse der Bestimmungen der folgenden Konstanten werden sodann zusammengestellt und kommentiert : Parameter der Figur und des Schwerefeldes der Erde; Sonnenparallaxe; Konstante der Mondgleichung; Planetenmassen; Aberrations-, Nutations- und Präzessionskonstante. Am Schluss wird eine ausführliche Bibliographie gegeben.

Резюме. — Авторы дают важнейшие зависимости между фундаментальными и производными постоянными в виде аналитических формул и таблиц. Они цитируют и комментируют результаты определений параметров определяющих форму Земли и её гравитационное поле, солнечного параллакса, постоянной уравнения Луны, масс планет и постоянных аберрации, прецессии и нутации. Авторы дают значительную библиографию.

Type
Research Article
Copyright
Copyright © CNRS 1965 

References

[1] Kopff, A., Astrometrische Konstanten (Landolt-Börnstein, Astron. und Geophys. , vol. 3, p. 43, Berlin-Göttingen-Heidelberg, 1952).Google Scholar
[2] Kulikov, K. A., Fundamental astronomical constants , Moscow, 1956 (in russian).Google Scholar
[3] Makemson, M. W., Baker, R. M. L. Jr. and Westrom, G. B., Analysis and standardization of astrodynamic constants ( J. Astronaut. Sc. , vol. 8, 1961, p. 1).Google Scholar
[4] Bergstrand, E., Determination of the velocity of light ( Handbuch der Physik , vol. 24, 1956, p. 1, Berlin-Göttingen-Heidelberg).Google Scholar
[5] Froome, K. D., Precision determination of the velocity of electromagnetic waves ( Nature , vol. 181, 1958, p. 258).Google Scholar
[6] Hagihara, Y., Recommendations of notation of the Earth potential ( Astron. J. , vol. 67, 1962, p. 108; also Trans. I. A. U., XI B, p. 173).Google Scholar
[7] Brouwer, D., Solution of the problem of artificial satellite theory without drag ( Astron. J. , vol. 64, 1959, p. 378).Google Scholar
[8] Clemence, G. M., On the system of astronomical constants ( Astron. J. , vol. 53, 1948, p. 169).Google Scholar
[9] Fischer, I., Parallax of the Moon in terms of a world geodetic system ( Astron. J. , vol. 67, 1962, p. 373).Google Scholar
[10] Jung, K., Figur der Erde (Handbuch der Physik, vol. 47, 1956, p. 534, Berlin-Göttingen-Heidelberg).Google Scholar
[11] Isotov, A. A., Reference-ellipsoid and the standard geodetic datum adopted in the U. S. S. R. ( Bull. Géodés., nouv. série , vol. 53, 1959, p. 1).CrossRefGoogle Scholar
[12] Kaula, W. M., A Geoid and World Geodetic System based on a combination of gravimetric, astrogeodetic, and satellite data ( J. Geophys. Res. , vol. 66, 1961, p. 1799).Google Scholar
[13] Kaula, W. M., Analysis of satellite observations for longitudinal variations of the gravitational field (Space Research, II, 1961, p. 360, North-Holland Publ. Comp., Amsterdam).Google Scholar
[14] Izsak, I. G., A determination of the ellipticity of the Earth's equator from the motion of two satellites ( Astron. J. , vol. 66, 1961, p. 226).Google Scholar
[15] Kozai, Y., The gravitational field of the Earth derived from motions of three satellites ( Astron. J. , vol. 66, 1961, p. 8).CrossRefGoogle Scholar
[16] Kozai, Y., Tesseral harmonics of the gravitational potential of the Earth as derived from satellite motions ( Astron. J. , vol. 66, 1961, p. 355).Google Scholar
[17] Newton, R. R., Ellipticity of the equator deduced from the motion of Transit 4 A ( J. Geosphys. Res. , vol. 67, 1962, p. 415).Google Scholar
[18] O'Keefe, J. A., Eckels, A. and Squires, R. K., The gravitational field of the Earth ( Astron. J. , vol. 64, 1959, p. 245).Google Scholar
[19] King-Hele, D. G., The Earth's gravitational potential, deduced from the orbits of artificial satellites ( Geophys. J. R. A. S. , vol. 4, 1961, p. 3).Google Scholar
[20] Smith, D. E., Determination of the Earth's gravitational potential from satellite orbits (Planetary and Space Science, vol. 8, 1961, p. 43).CrossRefGoogle Scholar
[21] Newton, R. R., Hopfield, H. S. and Kline, R. G., Odd harmonics of the Earth's gravitational field ( Nature , vol. 190, 1961, p. 617).Google Scholar
[22] Michielsen, H. F., The odd harmonics of the Earth's gravitational field ( Advances Astronaut. Sciences , vol. 6, Plenum Press, New York, 1961).Google Scholar
[23] King-Hele, D. G., Cook, G. E. and Rees, J. M., Earth's gravitational potential: Evaluation of even zonal harmonics from the 2nd to the 12th ( Nature , vol. 197, 1963, p. 785).Google Scholar
[24] Merson, R. H. and King-Hele, D. G., Use of artificial satellites to explore the Earth's gravitational field: results from Sputnik 2 ( Nature , vol. 182, 1953, p. 640).Google Scholar
[25] Gill, D., Combination of results and general conclusions. Solar parallax from heliometer observations of minor planets (vol. I, part 6) ( Ann. Cape Obs. , vol. 6, 1897).Google Scholar
[26] Hinks, A. R., Solar Parallax Papers No. 7: The general solution from the photographic right ascensions of Eros, at the opposition of 1900 ( Month. Not. , vol. 69, 1909, p. 544).CrossRefGoogle Scholar
[27] Hinks, A. R., The mass of the Moon, derived from the photographic observations of Eros made in 1900–1901 ( Month. Not. , vol. 70, 1909, p. 63).Google Scholar
[28] Hinks, A. R., Solar Parallax Papers No. 9: The general solution from the micro-metric right ascensions of Eros, at the opposition of 1900 ( Month. Not , vol. 70, 1910, p. 588).Google Scholar
[29] Spencer Jones, H., The solar parallax and the mass of the Moon from observations of Eros at the opposition of 1931 ( Mem. R. A. S. , vol. 66, part. 2, 1941; cf. Month. Not., vol. 101, p. 356).Google Scholar
[30] Spencer Jones, H., Determination of the elements of the Moon's orbit, the parallactic inequality and the Moon's semi-diameter from occultations of stars by the Moon observed at the Royal Observatory, Cape of Good Hope in the years 1880 to 1922 ( Ann. Cape Obs. , vol. 8, part 8, 1925).Google Scholar
[31] Spencer Jones, H., Discussion of observations of occultations of stars by the Moon, 1672–1908 ( Ann. Cape Obs. , vol. 13, part. 3, 1932).Google Scholar
[32] Brouwer, D., A new determination of the solar parallax from the parallactic inequality in the Moon's longitude ( Bull. Astron. , vol. 15, 1950, p. 165).Google Scholar
[33] Spencer Jones, H., The spectroscopic determination of the constant of aberration and of the solar parallax ( Ann. Cape Obs. , vol. 10, part 8, section A, 1928).Google Scholar
[34] Adams, W. S., Some results with the Coudé spectrograph of the Mount Wilson Observatory ( Astrophys. J. , vol. 93, 1941, p. 11).Google Scholar
[35] Witt, G., Baryzentrische Ephemeride des Planeten 433 Eros für die Perihelopposition 1930–1931 ( Astron. Abhand. Ergänzungsh. Astron. Nachr. , vol. 9, No. 1, 1933).Google Scholar
[36] Rabe, E., Derivation of fundamental astronomical constants from the observations of Eros during 1926–1945 ( Astron. J. , vol. 55, 1950, p. 112).Google Scholar
[37] McGuire, J. B., Spangler, E. R. and Wong, L., The size of the solar system ( Sc. American , vol. 204, No. 4, 1961, p. 64).Google Scholar
[38] Thomson, J. H., Ponsonby, J. E. B., Taylor, G. N. and Roger, R. S., A new determination of the solar parallax by means of radar echoes from Venus ( Nature , vol. 190, 1961, p. 519).CrossRefGoogle Scholar
[39] Kotelnikov, V. A., Radar contact with Venus (presented at the XIIth Intern. Astronaut. Congr. , Washington, D. C., October 1–7, 1961).Google Scholar
[40] Maron, I., Luchak, G. and Blitzstein, W., Radar observations of Venus ( Science , vol. 134, 1961, p. 1419; Flower and Cook Obs. Repr. No. 135).Google Scholar
[41] Pettengill, G. H., Briscoe, H. W., Evans, J. V., Gehrels, E., Hyde, G. M., Kraft, L. G., Price, R. and Smith, W. B., A radar investigation of Venus ( Astron. J. , vol. 67, 1962, p. 181).Google Scholar
[42] Muhleman, D. O., Holdridge, D. B. and Block, N., The astronomical unit determined by radar reflections from Venus ( Astron. J. , vol. 67, 1962, p. 191).Google Scholar
[43] Witt, G., Ueber die Notwendigkeit einer Verbesserung der Masse des Systems Erde-Mond ( Vierteljahrsschrift Astron. Gesellsch. , 43. Jhrg., 1908, p. 295).Google Scholar
[44] Noteboom, E., Beiträge zur Theorie der Bewegung des Planeten 433 Eros ( Astron. Nachr. , vol. 214, 1921, p. 154).CrossRefGoogle Scholar
[45] Priester, W., Roemer, M. and Schmidt-Kaler, Th., Apparent relation between solar activity and the 440-Mc/s radar distance of Venus ( Nature , vol. 196, 1962, p. 464).CrossRefGoogle Scholar
[46] Smith, W. B., Radar observations of Venus, 1961 and 1959 ( Astron. J. , vol. 68, 1963, p. 15).Google Scholar
[47] de Sitter, W., On the system of astronomical constants edited and completed by D. Brouwer ( B. A. N. , vol. 8, 1938, p. 213).Google Scholar
[48] Newcomb, S., The elements of the four inner planets and the fundamental constants of astronomy (Supplement to the Amer. Ephem. and Naut. Alm. for 1897, 1895).CrossRefGoogle Scholar
[49] Morgan, H. R. and Scott, F. P., Observations of the Sun 1900-1937 compared with Newcomb's tables ( Astron. J. , vol. 47, 1939, p. 193).Google Scholar
[50] Jeffreys, H., On the lunar equation ( Month. Not. , vol. 102, 1942, p. 194).Google Scholar
[51] Delano, E., The lunar equation from observations of Eros, 1930–1931 ( Astron. J. , vol. 55, 1950, p. 129).Google Scholar
[52] Duncombe, R. L., Motion of Venus 1750–1949 ( Astron. Papers Amer. Ephem. and Naut. Alm. , vol. 16, part 1, 1958).Google Scholar
[53] Makover, S. G. and Bokhan, N. A., Comet Encke-Backlund. Third Report: The comet's motion for 1898–1911 and a new determination of the mass of Mercury [ Publ. Inst. Theor. Astr. Leningrad , vol. 8, 1961, p. 135 (in russian)].Google Scholar
[54] Spencer Jones, H., Discussion of the Greenwich observations of the Sun, 1836–1923 ( Month. Not. , vol. 86, 1926, p. 426).Google Scholar
[55] Clémence, G. M., The motion of Mercury 1765–1937 ( Astron. Papers Amer. Ephem. and Naut. Alm. , vol. 11, part 1, 1943).Google Scholar
[56] van den Bosch, C. A., De massa's van de groote planeten (Dissertation, University of Utrecht, 1927).Google Scholar
[57] Brouwer, D. and Clemence, G. M., Orbits and masses of planets and satellites ( The Solar system , III, p. 31, Edited by Kuiper, G. P. and Middlehurst, B. M., University of Chicago Press, 1961).Google Scholar
[58] de Sitter, W., Determination of the mass of Jupiter and elements of the orbits of its satellites from observations made with the Cape heliometer (Ann. Cape Obs., vol. 12, part 1, 1915).Google Scholar
[59] Kulikov, D. K., Numerical methods in celestial mechanics as applied to the motion of Satellite VIII of Jupiter [Bull. Inst. Theor. Astr. Leningrad, vol 4, 1950, p. 311 (in russian)].Google Scholar
[60] Hertz, H. G., The mass of Saturn and the motion of Jupiter 1884–1948 ( Astron. Papers Amer. Ephem. and Naut. Alm. , vol. 15, part 2, 1953).Google Scholar
[61] Jeffreys, H., Second-order terms in the figure of Saturn ( Month. Not. , vol. 114, 1954, p. 433).CrossRefGoogle Scholar
[62] Clemence, G. M., Motion of Jupiter and mass of Saturn ( Astron. J. , vol. 65, 1960, p. 21).Google Scholar
[63] Gaillot, M. A., Tables nouvelles des mouvements d'Uranus et de Neptune ( Ann. Obs. Paris , Mémoires 28-A 1, 1910).Google Scholar
[64] van Biesbroeck, G., The mass of Neptune from a new orbit of its second satellite Nereid ( Astron. J. , vol. 62, 1957, p. 272).CrossRefGoogle Scholar
[65] Brouwer, D., The motions of the outer planets (George Darwin Lecture) ( Month. Not. , vol. 115, 1955, p. 221).Google Scholar
[66] Hattori, T., Latitude observations with floating zénith telescope at Mizusawa, part II ( Publ. Intern. Latitude Obs. Mizusawa , I, No. 2, 1953).Google Scholar
[67] Chandler, S. C., The probable value of the constant of aberration ( Astron. J. , vol. 23, 1903, p. 1).CrossRefGoogle Scholar
[68] Guinot, B., Une nouvelle mesure de la constante de l'aberration ( Bull. Astron. , vol. 22, 1959, p. 129).Google Scholar
[69] Spencer Jones, H., Observations made with the Cookson Floating Zenith Telescope in the years 1927–1936 at the Royal Observatory, Greenwich (H. M. Stationary Office, London, 1939).Google Scholar
[70] Kulikov, K. A., Determination of the constant of aberration from observations at the great Pulkovo Zenith Telescope [Astron. J., U. S. S. R., vol. 26, 1949, p. 44 (in russian)].Google Scholar
[71] Vashchilina, L. M., Investigation of the observations by W. J. Struve in 1840–1842 with the Pulkovo Transit in the prime vertical [Isvestiia Pulkovo Obs., vol. 18, 1950, p. 271 (in russian)].Google Scholar
[72] Romanskaja, S. V., Results of the observations at the great Pulkovo Zenith Telescope from 1929 Jan. 5 to 1941 July 9 [ Publ. Pulkovo Obs., (2), vol. 70, 1954, p. 15 (in russian)].Google Scholar
[73] Fichera, E. and Melchior, P., A propos de la constante d'aberration ( Comm. Obs. Roy. Belgique , No. 135, 1958).Google Scholar
[74] Ševarlić, B. M.a La détermination de la constante d'aberration des variations observées de la latitude de l'observatoire de Beograd ( Bull. Obs. Astron. Beograd , vol. 24, Nos. 3–4, 1960, p. 32).Google Scholar
[75] Guinot, B., Debarbat, S. and Lefebvre, M., La constante de l'aberration déduite des mesures de latitude et de temps faites à l'Observatoire de Paris avec l'astrolabe impersonnel A. Danjon (Bull. Astron., vol. 23, 1961, p. 295).Google Scholar
[76] Morgan, H. R., The aberration constant from declinations of pole stars ( Astron. J. , vol. 40, 1930, p. 24).Google Scholar
[77] Przybyllok, E., Die Nutationskonstante abgeleitet aus den Beobachtungen des Internationalen Breitendienstes (Zentralbureau der Internationalen Erdmessung. Neue Folge der Veröffentlichungen, No. 36, 1920).Google Scholar
[78] Jackson, J., A new determination of the constant of nutation ( Month. Not. , vol. 90, 1930, p. 733).Google Scholar
[79] Spencer Jones, H., The determination of the constant of nutation from the Greenwich latitude variations ( Month. Not. , vol. 99, 1939, p. 211).CrossRefGoogle Scholar
[80] Morgan, H. R., The nutation constant from circumpolar observations ( Astron. J. , vol. 50, 1943, p. 125).Google Scholar
[81] Kulikov, K. A., Determination of the constant of nutation from observations at the great Pulkovo Zenith Telescope [Astron. J., U. S. S. R., vol. 26, 1949, p. 165 (in russian)].Google Scholar
[82] Hattori, T., The determination of the constant of nutation from the latitude observations at the International Latitude Stations (Publ. Astron. Soc. Japan, vol.3, 1961, p. 126).Google Scholar
[83] Fedorov, E. P., Determination of the constant of nutation from observations of the International Latitude Service [ Astr. Circ. U. S. S. R. , No. 164, 1955, p. 10 (in russian)].Google Scholar
[84] Fedorov, E. P., Nutation as derived from latitude observations ( Astron. J. , vol. 64, 1959, p. 81).Google Scholar
[85] Woolard, E. W., Theory of the rotation of the Earth around its center of mass ( Astron. Papers Amer. Ephem. and Naut. Alm. , vol. 15, part 1, 1953).Google Scholar
[86] Newcomb, S., A new determination of the precessional constant ( Astron. Papers Amer. Ephem. and Naut. Alm. , vol. 8, part 1, 1897).Google Scholar
[87] Fotheringham, J. K., Precession, galactic rotation and equinox correction ( Month. Not. , vol. 86, 1926, p. 414).Google Scholar
[88] Oort, J. H., Investigations concerning the rotational motion of the galactic system, together with new determinations of secular parallaxes, precession and motion of the equinox ( B. A. N. , vol. 4, 1927, p. 79).Google Scholar
[89] Plaskett, J. S. and Pearce, J. A., The distance and direction to the gravitational centre of the galaxy from the motions of the O 5 to B 7 stars ( Month. Not. , vol. 94, 1934, p. 679).Google Scholar
[90] Pariisky, N., Ogrodnikov, K. and Fessenkov, V., Study of the effect of known parallaxes and galactic rotation upon the determination of the constant of the luni-solar precession of Newcomb [ Publ. Sternberg State Astron. Inst. , vol. 6, part 1, 1935, p. 104 (in russian)].Google Scholar
[91] van de Kamp, P. and Vyssotsky, A. N., A study of the proper motions of 18000 stars derived at the Leander McCormick Observatory ( Astron. J. , vol. 45, 1936, p. 161).Google Scholar
[92] Oort, J. H., A redetermination of the constant of precession, the motion of the equinox and the rotation of the galaxy from faint stars observed at the McCormick Observatory ( B. A. N. , vol. 8, 1937, p. 149).Google Scholar
[93] Wilson, R. E. and Raymond, H., Solar motion, precessional corrections and galactic rotation, derived from the proper motions of the General Catalogue ( Astron. J. , vol. 47, 1938, p. 49).Google Scholar
[94] Gliese, W., Bestimmung der Sonnenbewegung und der galaktischen Rotation, hergeleitet aus den Eigenbewegungen des FK 3 ( Astron. Nachr. , vol. 270, 1940, p. 127).Google Scholar
[95] Ali, A., Solar motion and galactic rotation from O- and B-type stars ( Month. Not. , vol. 101, 1941, p. 324).Google Scholar
[96] Oort, J. H., The constants of precession and of galactic rotation ( B. A. N. , vol. 9, 1943, p. 424).Google Scholar
[97] Williams, E. T. R. and Vyssotsky, A. N., An investigation of stellar motions. IV. The constants of solar motion, precession, and galactic rotation as derived from McCormick and Cape proper motions ( Astron. J. , vol. 53, 1948, p. 63; Publ. Leander McCormick Obs., vol. 10, p. 4).Google Scholar
[98] Williams, E. T. R. and Vyssotsky, A. N., An investigation of stellar motions. VI. The constants of galactic rotation and precession ( Astron. J. , vol. 53, 1948, p. 72; Publ. Leander McCormick Obs., vol. 10, p. 6).Google Scholar
[99] Brouwer, D., Comments on the masses of the inner planets ( Bull. Astron. , vol. 15, 1950, p. 171).Google Scholar
[100] Clemence, G. M., On revising the official system of astronomical constants ( Bull. Astron. , vol. 15, 1950, p. 181).Google Scholar
[101] Morgan, H. R. and Oort, J. H., A new determination of the precession and the constants of galactic rotation ( B. A. N. , vol. 11, 1951, p. 379).Google Scholar
[102] Gordon, J. E., Derivation of the constant of precession from a comparison of the catalogues of Schjellerup (1865.0) and Morin-Kondratiev (1900.0) [ Isvestiia Pulkovo Obs. , vol. 19, 1952, p. 172 (in russian)].Google Scholar
[103] Bakulin, P. I., Determination of precessional motion from proper motions of stars in flat subsystems [ Astr. Circ. U. S. S. R. , No. 139, 1953, p. 6 (in russian)].Google Scholar
[104] Weaver, H. F. and Morgan, H. R., The galactocentric circular velocity and corrections to the precession constant and the motion of the equinox ( Astron. J. , vol. 61, 1956, p. 268).Google Scholar
[105] Schilt, J., The correction to the motion of the equinox ( Astron. J. , vol. 65, 1960, p. 218).Google Scholar