Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T00:38:56.876Z Has data issue: false hasContentIssue false

Aspherical supernova explosions

Published online by Cambridge University Press:  26 May 2016

Peter A. Höflich
Affiliation:
Department of Astronomy, University of Texas, RLM 15.308, C-1400, Austin, TX 78712, USA
Dietrich Baade
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching-bei-München, BRD
Alexei M. Khokhlov
Affiliation:
Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, DC 20375-5352, USA
Lifan Wang
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
J. Craig Wheeler
Affiliation:
Department of Astronomy, University of Texas, RLM 15.308, C-1400, Austin, TX 78712, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Core collapse supernovae (SN) are the final stages of stellar evolution in massive stars during which the central region collapses, forms a neutron star (NS), and the outer layers are ejected. Recent explosion scenarios assumed that the ejection is due to energy deposition by neutrinos into the envelope, but detailed models do not produce powerful explosions. There is new and mounting evidence for an asphericity and, in particular, for axial symmetry in several supernovae which may be hard to reconcile within the spherical picture. This evidence includes the observed high polarization and its variation with time, pulsar kicks, high velocity iron-group and intermediate-mass elements material observed in remnants, direct observations of the debris of SN 1987A, etc. Some of the new evidence is discussed in more detail. To be in agreement with the observations, any successful mechanism must invoke some sort of axial symmetry for the explosion. We consider jet-induced/dominated explosions of core collapse supernovae. Our study is based on detailed 3-d hydrodynamical and radiation transport models. We find that the observations can be explained by low velocity, massive jets which stall well within the SN envelope. Such outflows may be produced by MHD-mechanisms, convective dominated accretion disks on the central object or asymmetric neutrino emissions. Asymmetric density/chemical distributions and, for SN 2002ap, off-center energy depositions have been identified as crucial for the interpretation of the polarization.

Type
Part 2. Interiors of Massive Stars
Copyright
Copyright © Astronomical Society of the Pacific 2003 

References

Bisnovatyi-Kogan, G.S. 1970, Astron. Zh. 47, 813 (= 1971, Soviet Astron. 14, 652).Google Scholar
Bowers, R.L., Wilson, J.R. 1982, ApJS 50, 115.CrossRefGoogle Scholar
Burrows, A., Hayes, J., Fryxell, B. 1995, ApJ 450.CrossRefGoogle Scholar
Colella, P., Woodward, P.R. 1984, J. Comp. Phys. 54, 174.CrossRefGoogle Scholar
Cropper, M., Bailey, J., McCowage, J., Cannon, R., Couch, W. 1988, MNRAS 231, 685.Google Scholar
Fesen, R.A., Gunderson, K.S. 1996, ApJ 470, 967.CrossRefGoogle Scholar
Fryer, C.L., Warren, M.S. 2002, ApJ (Letters) 574, L65.CrossRefGoogle Scholar
Gal-Yam, A., Shemmer, O., Dann, J. 2002, IAU Circular No. 7811, 3.Google Scholar
Herant, M., Benz, W., Hix, W.R., Fryer, C.L., Colgate, S.A. 1994, ApJ 435, 339.CrossRefGoogle Scholar
Höflich, P.A. 1988, PASP 7, 434.Google Scholar
Höflich, P.A. 1991, A&A 246, 481.Google Scholar
Höflich, P.A. 1995, ApJ 443, 89.CrossRefGoogle Scholar
Höflich, P.A., Wheeler, J.C., Hines, D., Trammell, S. 1995, ApJ 459, 307.CrossRefGoogle Scholar
Höflich, P.A., Khokhlov, A., Wang, L. 2001, in: Wheeler, J.C. & Martel, H. (eds.), 20th Texas Symposium on Relativistic Astrophysics, AIP-CP 586, 459.Google Scholar
Höflich, P.A. 2003, in: Hubeny, I., Mihalas, D. & Werner, K. (eds.), Stellar Atmosphere Modeling, ASP-CS in press (astro-ph/0207103).Google Scholar
Hughes, J.P., Rakowski, C.E., Burrows, D.N., Slane, P.O. 2000, ApJ (Letters) 528, 109.CrossRefGoogle Scholar
Jeffrey, D.J. 1991, ApJ 375, 264.CrossRefGoogle Scholar
Kinugasa, K., Kawakita, H., Ayani, K., et al. 2002, IAU Circular No. 7811, 1.Google Scholar
Khokhlov, A.M. 1998, J. Comp. Phys. 143, 519.CrossRefGoogle Scholar
Khokhlov, A.M., Höflich, P.A., Oran, E.S., Wheeler, J.C., Wang, L., Chtchelkanova, A.Yu. 1999, ApJ (Letters) 524, L107.CrossRefGoogle Scholar
Leonard, D.C., Filippenko, A.V., Barth, A.J., Matheson, T. 2000, ApJ 536, 239.CrossRefGoogle Scholar
LeBlanc, J.M., Wilson, J.R. 1970, ApJ 161, 541.CrossRefGoogle Scholar
Lucy, L.B. 1988, in: Kafatos, M. (ed.), Supernova 1987A in the Large Magellanic Cloud, Proc. 4th George Mason Astrophysics Workshop (Cambridge: CUP), p. 323.Google Scholar
Meikle, P., Lucy, L.B., Smartt, S.J., et al. 2002, IAU Circular No. 7811, 2.Google Scholar
Méndez, M., Clocchiatti, A., Benvenuto, O.G., et al. 1988, ApJ 334, 295.CrossRefGoogle Scholar
Mönchmeyer, R., Schäfer, G., Müller, E., Kates, R.E. 1991, A&A 246, 417.Google Scholar
Müller, E., Janka, H.T. 1997, A&A 317, 140.Google Scholar
Straniero, O., Chieffi, A., Limongi, M. 1997, ApJ 490, 425.CrossRefGoogle Scholar
Strom, R., Johnston, H.M., Verbunt, F., Aschenbach, B. 1995, Nature 373, 590.CrossRefGoogle Scholar
Symbalisty, E.M.D. 1984, ApJ 285, 729.CrossRefGoogle Scholar
Trammell, S., Hines, D., Wheeler, J.C. 1993, ApJ 414, 21.CrossRefGoogle Scholar
Van Riper, K.A. 1978, ApJ 221, 304.CrossRefGoogle Scholar
Wang, L., Wheeler, J.C., Li, Z., Clocchiatti, A. 1996, ApJ 467, 435.CrossRefGoogle Scholar
Wang, L., Howell, A., Höflich, P.A., Wheeler, J.C. 2001, ApJ 550, 1030.CrossRefGoogle Scholar
Wang, L., Wheeler, J.C., Höflich, P.A., et al. 2002, ApJ 579, 671.CrossRefGoogle Scholar