No CrossRef data available.
Article contents
Aspects of Mass Loss and Angular Momentum Loss in Binaries Containing Cool Components
Published online by Cambridge University Press: 07 August 2017
Abstract
Cool stars show evidence of dynamo activity which is stronger with more rapid rotation. Tidal friction in a moderately close binary can be a cause of relatively rapid rotation, so that cool components in such binaries are presumably liable to stronger stellar winds than single cool stars. As a consequence, the binary can be subject to orbital angular momentum loss. Both the mass loss and the orbital angular momentum loss can be on a timescale comparable to nuclear evolution in a red subgiant, or even faster. RS CVn stars probably give the best possibility of measuring these processes, although some observational data are difficult to reconcile with simple theories.
Barium stars, and symbiotics, may both be affected by these processes. They must be the products of evolution of moderately wide binaries, as must such objects as cataclysmic variables. I attempt to define the ranges of zero-age parameters necessary to produce such varied objects. A simplistic model of the distribution of stars brighter than 6th magnitude (a ‘Theoretical Bright Star Catalogue’) suggests that for every three Ba stars with a measurable orbit, there should be one main sequence ‘Ba star’.
- Type
- Invited Papers
- Information
- Copyright
- Copyright © Kluwer 1992