Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T18:45:29.564Z Has data issue: false hasContentIssue false

Anomalous Transport Induced by Field Aligned Currents and its Relation to Electromagnetic Coupling

Published online by Cambridge University Press:  04 August 2017

Christian T. Dum*
Affiliation:
Max-Planck-Institut für Physik und Astrophysik Institut für extraterrestrische Physik, D-8046 Garching Federal Republic of Germany

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The wealth of detailed observations on transport in turbulent plasmas that has become available over the last decade from laboratory experiments, in situ space craft observations and computer simulation demonstrates that in contrast to classical transport, the various steps in the analysis of anomalous transport, involving microscopic processes and the global dynamics, are closely coupled. It also points to many new, exciting, and truly anomalous phenomena. These statements apply especially to the highly dynamic processes connected with field aligned currents. The usually vast difference in time or length scales must allow for considerable simplications in the analysis, depending on the system at hand, but requires careful consideration of the microscopic or macroscopic physics that of necessity is to be treated in a simplified manner. This point is demonstrated by using a marginal stability approach in a numerical model for field aligned currents and electromagnetic coupling in an extended system. Its aim is to see how energy is supplied to a localized dissipation region from a distant generator and how this dissipation in turn affects the global electro-dynamic structure. In addition to the earth's auroral flux tubes, for which this model was primarily designed, these questions are of importance to other extended current systems in astrophysics. Microscopic processes supporting enhanced dissipation and leading to other truly anomalous processes such as acceleration of selected particle groups are then discussed in relation to the global problem.

Type
Session V
Copyright
Copyright © Reidel 1985 

References

Akasofu, S.-I.: 1977, Physics of magnetospheric substorms, Reidel, Dordrecht.CrossRefGoogle Scholar
Alfvén, H., Carlquist, P.: 1967, Sol. Phys., 1, 220.CrossRefGoogle Scholar
Arykov, A.A., Maltsev, Yu. P.: 1983, Planet. Space Sci. 31, 267.CrossRefGoogle Scholar
Barnes, C.W., Sturrock, P.A.: 1972, Astrophys. J. 174, 659.CrossRefGoogle Scholar
Baumjohann, W., Glaßmeier, K.H.: 1983, subm. Planet. Space Sci.Google Scholar
Böhmer, H., Fornaca, S.: 1979, J. Geophys. Res. 84, 7239.Google Scholar
Braginskii, S.I.: 1967, in Leontovich, M.A. (ed.), Reviews of Plasma Physics, Consultants Bureau, New York, Vol. I., p. 205.Google Scholar
Braginskii, S.I.: 1967, in Leontovich, M.A. (ed.), Reviews of Plasma Physics, Consultants Bureau, New York, Vol. I, p. 205.Google Scholar
Burke, W.J., Hardy, D.A., Rich, F.J., Kelley, M.C., Smiddy, M., Shuman, J.: 1980, Geophys. Res. 85, 1179.CrossRefGoogle Scholar
Bykowskii, Yu. A., Lagoda, V.B.: 1982, S. Phys. JETP 56, 61 (Zh. Eksp. Teor. Fiz. 83, 114).Google Scholar
Cattell, C.: 1981, J. Geophys. Res. 86, 3641.CrossRefGoogle Scholar
Chiu, Y.T.: Schulz, M.: 1978, J. Geosphys. Res. 83, 629.CrossRefGoogle Scholar
Christiansen, P.J., Dum, C.T., Lysak, R.L.: 1982, to be publ.Google Scholar
Correll, D.L., Rynn, , Böhmer, H.: 1975, Phys. Fluids 18, 1800.CrossRefGoogle Scholar
Dum, C.T.: 1978a, Phys. Fluids 21, 945.CrossRefGoogle Scholar
Dum, C.T.: 1978b, Phys. Fluids 21, 956.CrossRefGoogle Scholar
Dum, C.T.: 1981, in Akasofu, S.I. and Kan, J.R. (ed.), Physics of Auroral Arc Formation, Geophys. Monograph Ser., AGU, Washington, p. 408.Google Scholar
Dum, C.T., Chodura, R.: 1979, in Palmadesso, P.J. and Papadopoulos, K. (ed.), Wave instabilities in Space Plasmas, Reidel, Dordrecht.Google Scholar
Dum, C.T., Dupree, T.H.: 1970, Phys. Fluids 13, 2064.CrossRefGoogle Scholar
Dum, C.T., Chodura, R., Biskamp, D.: 1974, Phys. Rev. Letters 32, 1231.CrossRefGoogle Scholar
Eselevich, V.G., Eskov, A.G., Kurtmullaev, R. Kh., Malyutin, A.I.: 1971, Sov. Phys. JETP, 33, 898 (Zh. Eksp. Theor. Fiz. 60, 1658, 1971).Google Scholar
Fejer, J.A., Kan, J.R.: 1969, J. Plasma Phys. 3, 331.CrossRefGoogle Scholar
Goertz, C.K.: 1980, J. Geophys. Res. 85, 2949.CrossRefGoogle Scholar
Goertz, C.K., Boswell, R.W.: 1979, J. Geophys. Res. 84, 7239.CrossRefGoogle Scholar
Gold, T., Hoyle, F.: 1960, Mon. Not. Roy. Astr. Soc. 120, 89.CrossRefGoogle Scholar
Gurnett, D.A., Anderson, R.R.: 1981, in Akasofu, S.-I., Kan, J.R. (ed.) Physics of Auroral Arc Formation, Geophys. Monograph Ser., AGU, Washington, p. 341.Google Scholar
Gurnett, D.A., Goertz, C.K.: 1981, J. Geophys. Res. 86, 717.CrossRefGoogle Scholar
Guyot, M., Hollenstein, Ch.: 1983, Phys. Fluids 26, 1596.CrossRefGoogle Scholar
Haerendel, G.: 1983, in Hultquist, B., Hagfors, T. (ed.), High Latitude Space Plasma Physics, Plenum, London.Google Scholar
Hasegawa, A., Uberoi, C.: 1982, The Alfvén Wave, Tech. Inform. Center, U.S. Dep. of Energy.Google Scholar
Heyvaerts, J.: 1974, Sol. Phys. 38, 419 CrossRefGoogle Scholar
Heyvaerts, J.: 1981, in Priest, E.R. (ed.), Solar Flare Magnetohydrodynamics, Gordon + Breach, New York, p. 429 Google Scholar
Heyvaerts, J., Priest, E.R., Rust, D.M.: 1977, Astrophys. J. 216, 123.CrossRefGoogle Scholar
Hollenstein, Ch., Guyot, M.: 1983, Phys. Fluids 26, 1606.CrossRefGoogle Scholar
Kan, J.R.: 1982, Space Sci. Rev. 31, 71.CrossRefGoogle Scholar
Lee, L.C., Kan, J.R., Wu, C.S.: 1980, Planet. Space Sci. 28, 703.CrossRefGoogle Scholar
Lysak, R.L., Dum, C.T.: 1983, J. Geophys. Res. 88, 365.CrossRefGoogle Scholar
Mallinckrodt, A.J., Carlson, C.W.: 1978, J. Geophys. Res. 83, p. 1426.CrossRefGoogle Scholar
Maltsev, Yu. P., Lyatsky, W.B., Lyatskaya, A.M.: 1977, Planet. Spcae Sci. 25, 53.CrossRefGoogle Scholar
Manheimer, W., Boris, J.P.: 1977, Comments Plasma Phys. Cont. Fusion 3, 15.Google Scholar
Mozer, F.S., Catell, C.A., Hudson, M.K., Lysak, R., Termin, N.N., Torbert, R.B.: 1981, Space Sci. Rev. 27, 155.Google Scholar
Neubauer, F.M.: 1980, J. Geophys. Res. 85, 1171.CrossRefGoogle Scholar
Nishida, A.: 1979, J. Geophys. Rs. 84, 3409.CrossRefGoogle Scholar
Papadopoulos, K.: 1977, Rev. Geophys. Space Phys. 15, 113.CrossRefGoogle Scholar
Piddington, J.H.: 1974, Sol. Phys. 38, 465.CrossRefGoogle Scholar
Priest, E.R. (ed.): 1981, Solar Flare Magnetohydrodynamics, Gordon + Breach, New York.Google Scholar
Okuda, H., Ashour-Abdalla, M.: 1983, J. Geophys. Res. 88, 899.CrossRefGoogle Scholar
Sato, T.: 1982 in Nishida, A. (ed.) Magnetospheric Physics, Reidel Dordrecht, p. 197.CrossRefGoogle Scholar
Sato, T., Hayashi, T.: 1979, Phys. Fluids 22, 1189.CrossRefGoogle Scholar
Scholer, M.: 1970, Plan. Space Sci. 18, 977.CrossRefGoogle Scholar
Söldner, F., Dum, C.T., Steuer, K.H.: 1977, Phys. Rev. Letters 39, 194.CrossRefGoogle Scholar
Southwood, D.J., Stuart, W.F.: 1979, in Akasofu, S.I. (ed) Dynamics of the Magnetosphere, Reidel, Dordrecht, p. 341.CrossRefGoogle Scholar
Sturrock, P.A.: 1971, Astrophys. J. 164, 529.CrossRefGoogle Scholar
Ugai, M.: 1982, Phys. Fluids 25, 1027.CrossRefGoogle Scholar