Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T16:47:09.746Z Has data issue: false hasContentIssue false

Analytical solution of the motion of the planets over several thousands of years

Published online by Cambridge University Press:  25 May 2016

P. Bretagnon*
Affiliation:
Bureau des Longitudes 77, avenue Denfert-Rochereau, 75014 Paris, France

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The results of a planetary theory built by an iterative method are given here in order to show the relation with the secular variation theories and the meaning of the mean elements in these latter theories. The general theories have a validity span of several millions years but a weak precision; on the contrary, the secular variation theories reach a great precision over several thousand years. Two applications of the analytical planetary theories are presented: the relation between the barycentric coordinates and the geocentric ones; the determination of the terms of precession and nutation for the rigid Earth.

Type
Part II - Planets and Moon: Theory and Ephemerides
Copyright
Copyright © Kluwer 1996 

References

Berger, A. (1973) Théorie astronomique des paléoclimats, Thèse, Louvain. .Google Scholar
Borderies, N. (1980) La rotation de Mars. Thèse, Toulouse. .Google Scholar
Bretagnon, P. (1982) Astron. Astrophys., 114, p. 278288.Google Scholar
Bretagnon, P., Francou, G. (1988) Astron. Astrophys., 202, p. 309315.Google Scholar
Bretagnon, P., Simon, J.L. (1990) Astron. Astrophys., 239, p. 387398.Google Scholar
Bretagnon, P., Francou, G. (1992) IAU Symposium no. 152, p. 3742.Google Scholar
Brumberg, V.A., Bretagnon, P., Francou, G. (1991) in: Capitaine, N. (ed.) Systèmes de références spatio-temporels. Journées 1991, Obs. de Paris, p. 141.Google Scholar
Bursa, M. (1992) Bull. Geod., 66–2, p. 193.Google Scholar
Chapront-Touzé, M., Chapront, J. (1983) Astron. Astrophys., 124, p. 50.Google Scholar
Duriez, L. (1978) Astron. Astrophys., 68, p. 199.Google Scholar
Fairhead, L., Bretagnon, P. (1990) Astron. Astrophys., 229, p. 240.Google Scholar
Fukushima, T. (1995) Astron. Astrophys., 294, p. 895.Google Scholar
Hirayama, Th., Fujimoto, M.-K., Kinoshita, H., Fukushima, T. (1987) IAG Symposia at IUGG, Tome I, p. 91 Google Scholar
Kinoshita, H., Souchay, J. (1990) Celest. Mech., 48, p. 187.CrossRefGoogle Scholar
Lieske, J.H., Lederle, T., Fricke, W., Morando, B. (1977) Astron. Astrophys., 58, p. 116.Google Scholar
McCarthy, D.D. (1992), IERS Standards (1992) IERS Technical Note 13, Observatoire de Paris.Google Scholar
Moisson, X. (1995), Rapport de stage de DEA Observatoire de Paris. .Google Scholar
Simon, J.-L., Chapront, J. (1974) Astron. Astrophys., 32, p. 51.Google Scholar
Simon, J.L. (1983) Astron. Astrophys., 120, p. 197202.Google Scholar
Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touzé, M., Francou, G., Laskar, J. (1994) Astron. Astrophys., 282, p. 663683.Google Scholar
Standish, E.M. (1982) Astron. Astrophys., 114, p. 297302.Google Scholar
Ward, W.R. (1979) Present Obliquity Oscillations of Mars: Fourth-Order Accuracy on Orbital e and I. J. Geophys. Res., 84 p. 237.Google Scholar
Williams, J. G., Newhall, X X, Dickey, J. O. (1991) Astron. Astrophys., 241, L9.Google Scholar
Williams, J. G. (1994) Astron. J., 108 (2), p. 711.Google Scholar