Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:13:15.219Z Has data issue: false hasContentIssue false

An Update on Binary Formation by Rotational Fission

Published online by Cambridge University Press:  13 May 2016

Joel E. Tohline
Affiliation:
Louisiana State University, Department of Physics and Astronomy, Baton Rouge, LA 70803–4001, U.S.A.
Richard H. Durisen
Affiliation:
Department of Astronomy, Swain West 319, Indiana University, Bloomington, IN 47405, U.S.A.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During the 1980s, numerical simulations showed that dynamic growth of a barlike mode in initially axisymmetric, equilibrium protostars does not lead to prompt binary formation, i.e., fission. Instead, such evolutions usually produce a dynamically stable, spinning barlike configuration. In recent years, this result has been confirmed by numerous groups using a variety of different hydrodynamical tools, and stability analyses have convincingly shown that fission does not occur in such systems because gravitational torques cause nonlinear saturation of the mode amplitude. Other possible routes to fission have been much less well scrutinized because they rely upon a detailed understanding of the structure and stability of initially nonaxisymmetric structures and/or evolutions that are driven by secular, rather than dynamic processes. Efforts are underway to examine these other fission scenarios.

Type
II. Theoretical Context: The Big Picture
Copyright
Copyright © Astronomical Society of the Pacific 2001 

References

Andalib, S. W. 1998, Ph.D. Dissertation, Louisiana State University.Google Scholar
Bate, M. R. 1998, ApJL, 508, L95.CrossRefGoogle Scholar
Cazes, J. E. 1999, Ph.D. Dissertation, Louisiana State University.Google Scholar
Cazes, J. E., & Tohline, J. E. 2000, ApJ, 532, 1051.CrossRefGoogle Scholar
Chandrasekhar, S. 1969, Ellipsoidal Figures of Equilibrium (New Haven: Yale Univ. Press)Google Scholar
Durisen, R. H., Gingold, R. A., Tohline, J. E., & Boss, A. P. 1986, ApJ, 305, 281.CrossRefGoogle Scholar
Durisen, R. H., Pickett, B. K., Bate, M. R., Imamura, J. N., Brandl, A., & Sterzik, M. F. 2000, in IAU Symp. 200, Poster Proceedings, ed. Reipurth, B. & Zinnecker, H. (Potsdam), 187.Google Scholar
Durisen, R. H., & Tohline, J. E. 1985, in Protostars & Planets II, ed. Black, D. C. & Matthews, M. S. (Tucson: Univ. Arizona Press), 534.Google Scholar
Imamura, J. N., Durisen, R. H., & Pickett, B. K. 2000, ApJ, 528, 946.CrossRefGoogle Scholar
Lebovitz, N. R. 1987a, Geophys Ap Fluid Dynamics, 38, 15.CrossRefGoogle Scholar
Lebovitz, N. R. 1987b, in Highlights of Astronomy Vol. 8, ed. McNally, D. (Boston: Kluwer), 129.Google Scholar
New, K. C. B., Centrella, J. M., & Tohline, J. E. 2000, Phys. Rev. D, in press.Google Scholar
Shu, F. H., Laughlin, G., Lizano, S., & Galli, D. 2000, ApJ, 535, 190.CrossRefGoogle Scholar
Tassoul, J.-L. 1978, Theory of Rotating Stars (Princeton: Princeton Univ. Press)Google Scholar
Tohline, J. E., Cazes, J. E., & Cohl, H. S. 1999, in Numerical Astrophysics, ed. Miyama, S. M., Tomisaka, K. & Hanawa, T. (Boston: Kluwer), 155.CrossRefGoogle Scholar
Shibata, M., Baumgarte, T. W., & Shapiro, S. L. 2000, ApJ, in press.Google Scholar