Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T22:37:13.975Z Has data issue: false hasContentIssue false

AMiBA: Array for Microwave Background Anisotropy

Published online by Cambridge University Press:  26 May 2016

K. Y. Lo
Affiliation:
Academia Sinica Institute of Astronomy & Astrophysics (ASIAA) and Physics department, National Taiwan University (NTU)
T. H. Chiueh
Affiliation:
Academia Sinica Institute of Astronomy & Astrophysics (ASIAA) and Physics department, National Taiwan University (NTU)
R. N. Martin
Affiliation:
ASIAA
Kin-Wang Ng
Affiliation:
ASIAA
H. Liang
Affiliation:
Physics department, University of Bristol
Ue-Li Pen
Affiliation:
Canadian Institute of Theoretical Astrophysics (CITA) and ASIAA
Chung-Pei Ma
Affiliation:
Physics department, University of Pennsylvania and ASIAA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

As part of a 4-year Cosmology and Particle Astrophysics (CosPA) Research Excellence Initiative in Taiwan, AMiBA - a 19-element dual-channel 85-105 GHz interferometer array is being specifically built to search for high redshift clusters of galaxies via the Sunyaev-Zeldovich Effect (SZE). In addition, AMiBA will have full polarization capabilities, in order to probe the polarization properties of the Cosmic Microwave Background. AMiBA, to be sited on Mauna Kea in Hawaii or in Chile, will reach a sensitivity of ˜ 1 mJy or 7μK in 1 hour. The project involves extensive international scientific and technical collaborations. The construction of AMiBA is scheduled to starting operating in early 2004.

Type
Part VIII: Dark Matter and Ω0
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Barbosa, D., Bartlett, J. G., Blanchard, A., Oukbir, J., 1996, A&A, 314,13.Google Scholar
Birkinshaw, M., 1999, Phys. Rept., 310, 97.Google Scholar
Bond, J. R., Efstathiou, G. 1984, ApJ, 285, L45.Google Scholar
Cen, R., Ostriker, J., 1999 ApJL, 519, L109.Google Scholar
Dave, et al 2000, astro-ph0007217.Google Scholar
Fan, Z, Chiueh, T. 2000, ApJ (in press), astro-ph 0011452.Google Scholar
Fukugita, M., Hogan, C. J., Peebles, P. J. E. 1998, ApJ, 53, 518.Google Scholar
Netterfield, C. B. et al. 1995, ApJL, 474, L69.Google Scholar
Pen, U-L, 1999, ApJL, 510, 1L.Google Scholar
Popieszalski, M. et al. 2000, IEEE MTT-S Symp. Digest, in press.Google Scholar
Staggs, S. T., Gundersen, J. O., Church, S. E. astro-ph 9904062.Google Scholar
Sunyaev, R.A., Zel'dovich, Ya. B., 1972, Comm. Astrophys. Sp. Phys., 4, 173.Google Scholar
White, M., Carlstrom, J. E., Dragovan, M., Holzapfel, W. L. 1999, ApJ, 514, 12.Google Scholar
Wu, K. K. S., Fabian, A. C. Nulsen, P., 1999, MNRAS, in press.Google Scholar
Zaldarriaga, M., Spergel, D. N., Seljak, U. 1997, ApJ, 488, 1.Google Scholar