Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T12:28:04.246Z Has data issue: false hasContentIssue false

Abundance Clues to Early Galactic Chemical Evolution

Published online by Cambridge University Press:  19 July 2016

James W. Truran*
Affiliation:
Max-Planck-Institut für Astrophysik, 8046 Garching b. München, FRG, Dept. of Astronomy, University of Illinois, Urbana, Illinois 61801, USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High S/N spectroscopic studies of the abundance patterns characterizing extremely metal-deficient halo field stars and globular cluster stars have served to provide significant clues to and increasingly stringent boundary conditions upon the chemical evolution of the halo population of our galaxy. Guided by our current knowledge of nucleosynthesis as a function of stellar mass occurring in stars and supernovae, we identify some interesting constraints that these combined observational and theoretical considerations impose upon theories of the early history of our galaxy.

Type
VII. Abundance Constraints on Stellar Evolution, Nucleosynthesis, and Cosmological Theories
Copyright
Copyright © Kluwer 1988 

References

Bond, H. E. 1981, Astrophys. J., 248, 606.CrossRefGoogle Scholar
Cayrel, R. 1986, Astr. Astrophys., 168, 81.Google Scholar
Fall, S.M. and Rees, M.J. 1985, Astrophys. J., 298, 18.Google Scholar
Fall, S.M. and Rees, M.J. 1988, in Globular Cluster Systems in Galaxies, ed. Grindlay, J.E. and Philip, A.G.D. (Dordrecht: Reidel).Google Scholar
François, P. 1986a, Astr. Astrophys., 160, 264.Google Scholar
François, P. 1986b, Astr. Astrophys., 165, 183.Google Scholar
François, P., Spite, M., and Spite, F. 1987, Astr. Astrophys. in press.Google Scholar
Gratton, R.G., Quarta, M.L., and Ortolani, S. 1987, Astr. Astrophys. in press.Google Scholar
Gratton, R.G. and Sneden, C. 1987, Astr. Astrophys., 178, 179.Google Scholar
Hillebrandt, W. 1978, Space Sci. Rev., 21, 639.Google Scholar
Iben, I. Jr. and Truran, J.W. 1978, Astrophys. J., 220, 980.CrossRefGoogle Scholar
Laird, J.B. 1985, Astrophys. J., 289, 556.CrossRefGoogle Scholar
Luck, R.E. and Bond, H.E. 1985, Astrophys. J., 292, 559.Google Scholar
Merrill, P.W. 1952, Science, 115, 484.Google Scholar
Pilachowski, C.A., Sneden, C., and Wallerstein, G. 1983, Astrophys. J. Suppl., 52, 241.Google Scholar
Renzini, A. and Voli, M. 1981, Astr. Astrophys., 94, 175.Google Scholar
Sneden, C. and Pilachowski, C.A. 1985, Astrophys. J. Letters, 288, L55.Google Scholar
Spite, M. and Spite, F. 1978, Astr. Astrophys., 67, 23.Google Scholar
Spite, M. and Spite, F. 1985, Ann. Rev. Astr. Ap., 23, 225.CrossRefGoogle Scholar
Thielemann, F.-K., Nomoto, K., and Yokoi, K. 1986, Astr. Astrophys., 158, 17.Google Scholar
Truran, J.W. 1981, Astr. Astrophys., 97, 391.Google Scholar
Truran, J.W. 1983, Mem. S.A. Ita., 54, 113.Google Scholar
Truran, J.W. 1984, Ann. Rev. Nucl. Part. Sci., 34, 53.Google Scholar
Truran, J.W. 1987, in Relativistic Astrophysics, ed. Ulmer, M.P. (Singapore: World Scientific), p. 430.Google Scholar
Truran, J.W. and Arnett, W.D. 1971, Astrophys. Space Sci., 11, 430.Google Scholar
Truran, J.W., Cowan, J.J., and Cameron, A.G.W. 1985, in Nuclear Astrophysics, ed. Hillebrandt, W. (Munich: Max-Planck Publication MPA 199), p. 81.Google Scholar
Truran, J.W. and Thielemann, F.-K. 1987, in Stellar Populations, ed. Norman, C.A., Renzini, A., and Tosi, M. (Cambridge: Cambridge University Press), p. 149.Google Scholar
Woosley, S.E. 1987, Saas Fee Lecture Notes, preprint.Google Scholar