Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T21:22:49.201Z Has data issue: false hasContentIssue false

The 14 μm Band of Carbon Stars

Published online by Cambridge University Press:  25 May 2016

I. Yamamura
Affiliation:
Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, Kruislaan 403, 1098 SJ, The Netherlands
T. de Jong
Affiliation:
Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, Kruislaan 403, 1098 SJ, The Netherlands
L.B.F.M. Waters
Affiliation:
Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, Kruislaan 403, 1098 SJ, The Netherlands
J. Cami
Affiliation:
Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, Kruislaan 403, 1098 SJ, The Netherlands
K. Justtanont
Affiliation:
Stockholm Observatory, 13336 Saltsjöbaden, Sweden

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have studied the absorption bands around 14 μm in the spectra of 11 carbon stars with mass-loss rates ranging from 10−8 to 10−4 M yr−1, based on data obtained with the Short Wavelength Spectrometer (SWS) on board the Infrared Space Observatory (ISO). All stars clearly show a C2H2 absorption band peaking at 13.7 μm, while the contribution from HCN molecules is small in this wavelength region. A simple plane-parallel LTE model with two layers at different temperatures is used to derive the C2H2 abundances in the outer photosphere and in the circumstellar envelope. We find that (1) the column density of the hot-layer, placed at about 3R* with a temperature of 1400 K is roughly the same for all stars regardless of the mass-loss rate, and (2) the contribution of cool molecules in the circumstellar envelope increases with the dust mass-loss rate, (3) the abundance of C2H2 in the two layers is about the same, i.e. no obvious depletion of C2H2 molecules seems to occur in the circumstellar envelope.

Type
Part 3. Formation, Composition, and Processing of Dust
Copyright
Copyright © Astronomical Society of the Pacific 1999 

References

Cami, J., Justtanont, K., de Jong, T., et al., 1997, First ISO Workshop on Analytical Spectroscopy, Heras, A.M. et al. (eds.), ESA SP-419, p. 159 Google Scholar
Cernicharo, J., Barlow, M.J., González-Alfonso, E., et al., 1996, A&A 315, L201 Google Scholar
de Graauw, Th., Haser, L.N., Beintema, D.A., et al., 1996, A&A 315, L49 Google Scholar
Fuente, A., Cernicharo, J., Omont, A., 1998, A&A 330, 232 Google Scholar
Groenewegen, M.A.T., de Jong, T., van der Bliek, N.S., Slijkhuis, S., Willems, F.J., 1992, A&A 253, 150 Google Scholar
Höfner, S., Dorfi, E.A., 1997, A&A 319, 648 Google Scholar
Justtanont, K., Feuchtgruber, H., de Jong, T., et al., 1998, A&A 330, L17 Google Scholar
Kabbadj, Y., Herman, M., Di Lonardo, , et al., 1991, J. Mol. Spec. 150, 535 Google Scholar
Keady, J.J., Hinkle, K.H., 1988, ApJ 331, 539 Google Scholar
Ready, J.J., Ridgway, S.T., 1993, ApJ 406, 199 Google Scholar
Kessler, M., Steinz, J.A., Anderegg, M.E., et al., 1996, A&A 315, L27 Google Scholar
Loup, C., Forveille, T., Omont, A., Paul, J.F., 1993, A&AS 99, 291 Google Scholar
Olofsson, H., Carlström, U., Eriksson, K., et al., 1990, A&A 230, L13 Google Scholar
Palmer, K.F., Mickelson, M.E., Rao, K.N., 1972, J. Mol. Spec. 44, 131 Google Scholar
Rinsland, C.P., Baldacci, A., Rao, K.N., 1982, ApJS 49, 487 Google Scholar
Tsuji, T., 1964, Ann. Tokyo Astr. Obs. 2nd Ser. 9, 1 Google Scholar
Weber, M., Blass, W.E., Halsey, G.W., et al., 1994, J. Mol. Spec. 165, 107 Google Scholar
Yamamura, I., de Jong, T., Justtanont, K., et al., 1998, Ap&SS 255, 351 Google Scholar