Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T00:55:36.818Z Has data issue: false hasContentIssue false

Ω0 from Clusters of Galaxies

Published online by Cambridge University Press:  26 May 2016

Alain. Blanchard
Affiliation:
LAOMP, UPS, 14, Av. Ed. Belin, 31 400 Toulouse & ULP, Strasbourg, France
Rachida. Sadat
Affiliation:
LAOMP, UPS, 14, Av. Ed. Belin, 31 400 Toulouse, France
Jim. Bartlett
Affiliation:
LAOMP, UPS, 14, Av. Ed. Belin, 31 400 Toulouse, France

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clusters constitute a very rich source of information for cosmology. Their present day abundance can be used to found the normalization and the shape of the power spectrum. Clusters can also be used to determine the parameter density of the universe Ω − 0. The evolution of their number density is a powerful cosmological global test of the mean density of the Universe. It is fashionable to claim that the abundance of clusters does not change very much with clusters redshift and therefore favor a low density universe. This is an overstatement and analyses based on the most recent data rather favor a high density universe. The baryon fraction in clusters is an alternative method to derive the mean density of the Universe. Here again, taking into account several biases in the baryon fraction is derived from data, the actual baryon fraction seen in clusters can be reconcilied with a high density universe.

Type
Part VIII: Dark Matter and Ω0
Copyright
Copyright © Astronomical Society of the Pacific 2005 

References

Arnaud, M., & Evrard, A. E. 1999, MNRAS, 305, 631.CrossRefGoogle Scholar
Balland, C., & Blanchard, A. 1997, ApJ, 487, 33.CrossRefGoogle Scholar
Blanchard, A., & Bartlett, J. 1998, A&A, 314, 13.Google Scholar
Blanchard, A., Sadat, R., Bartlett, J., & Le Dour, M. 2000, astro-ph/9908037, A&A, in press.Google Scholar
Bryan, G. L., & Norman, M. L. 1998, ApJ, 495, 80.Google Scholar
Eke, V. R., Cole, S., Frenk, C. S., & Henry, P. J. 1998, MNRAS, 298, 1145.Google Scholar
Donahue, M., & Voit, G. M. 1999, astro-ph/9907333, ApJ, 523, L137.Google Scholar
Donahue, M., Voit, G. M., Scharf, C. A., Gioia, I., Mullis, C. P., Hughes, J. P., & Stocke, J. T. 2000, astro-ph/9906295, ApJ, 527, 525.Google Scholar
Evrard, A. E., Metzler, C. A., & Navarro, J. F. 1996, ApJ, 469, 494.CrossRefGoogle Scholar
Girardi, M., Borgani, S., Giuricin, G., Mardirossian, F. & Mezzetti, M. 1998, ApJ, 506, 45.Google Scholar
Henry, J. P., & Arnaud, K.A. 1991, ApJ, 372, 410.Google Scholar
Henry, J. P. 1997, ApJ, 489, L1.Google Scholar
Henry, J. P. 2000, ApJ, 534, 565.Google Scholar
Hughes, J. P. 1997, astro-ph/9709272.Google Scholar
Maoli, R. et al. 2000, astro-ph/0011251.Google Scholar
Mathiesen, B., Evrard, A. E., & Mohr, J.J. 1999, ApJ, 520, L21.Google Scholar
Markevitch, M. 1998, ApJ, 503, 77.CrossRefGoogle Scholar
Neumann, D. M., & Arnaud, M. 1999, A&A, 348, 711.Google Scholar
Oukbir, J., & Blanchard, A. 1992, A&A, 262, L21.Google Scholar
Ponman, T. J., Cannon, D. B., & Navarro, J. F. 1999, Nature, 397, 135.CrossRefGoogle Scholar
Reichart, D. E. et al 1999, ApJ, 518, 521.Google Scholar
Roussel, H., Sadat, R., & Blanchard, A. 2000, A&A, 361, 429.Google Scholar
Sadat, R., Blanchard, A., & Oukbir, J. 1998, A&A, 329, 21.Google Scholar
Sadat, R., & Blanchard, A., 2000, submitted to A&A.Google Scholar
Van Waerbeke, L. et al. 2000, A&A, 358, 30.Google Scholar
Viana, P.T.R., & Liddle, A.R. 1999, MNRAS, 303, 535.Google Scholar
Vikhlinin, A., Forman, W., & Jones, C. 1999, ApJ 525, 47.Google Scholar
White, S. D. M., Navarro, J. F., Evrard, A. E., & Frenk, C. F. 1993, Nature 366 429.Google Scholar
Tytler, D. et al. 2000, Physica Scripta, astro-ph/0001318.Google Scholar
Zucca, E. et al. 1997, A&A, 326, 477.Google Scholar