Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:26:08.995Z Has data issue: false hasContentIssue false

Structure and Stimulus Familiarity: A Study of Memory in Chess-Players with Functional Magnetic Resonance Imaging

Published online by Cambridge University Press:  10 April 2014

Guillermo Campitelli
Affiliation:
Brunel University
Fernand Gobet*
Affiliation:
Brunel University
Amanda Parker
Affiliation:
University of Newcastle
*
Correspondence concerning this article should be sent to Prof. Fernand Gobet, Cleveland Road, School of Social Sciences and Law, Brunel University, West London. Uxbridge, Middlesex, UB8 3PH –United Kingdom. E-mail: [email protected]

Abstract

A grandmaster and an international chess master were compared with a group of novices in a memory task with chess and non-chess stimuli, varying the structure and familiarity of the stimuli, while functional magnetic resonance images were acquired. The pattern of brain activity in the masters was different from that of the novices. Masters showed no differences in brain activity when different degrees of structure and familiarity where compared; however, novices did show differences in brain activity in such contrasts. The most important differences were found in the contrast of stimulus familiarity with chess positions. In this contrast, there was an extended brain activity in bilateral frontal areas such as the anterior cingulate and the superior, middle, and inferior frontal gyri; furthermore, posterior areas, such as posterior cingulate and cerebellum, showed great bilateral activation. These results strengthen the hypothesis that when performing a domain-specific task, experts activate different brain systems from that of novices. The use of the experts-versus-novices paradigm in brain imaging contributes towards the search for brain systems involved in cognitive processes.

Un gran maestro y un maestro internacional de ajedrez se compararon con un grupo de aficionados en una tarea de memoria con estímulos ajedrecísticos y no ajedrecísticos, variando la estructura y familiaridad de los estímulos, mientras se tomaron imágenes cerebrales usando resonancia magnética funcional. El patrón de activación cerebral difirió entre los maestros y los aficionados. Los maestros no presentaron ninguna diferencia en activación cerebral cuando se compararon distintos niveles de familiaridad y estructura de los estímulos; en cambio, los aficionados presentaron diferencias en activación cerebral en dichas comparaciones. Las diferencias más considerables se encontraron en el contraste de familiaridad del estímulo en posiciones de ajedrez. En ese contraste hubo una extensa actividad cerebral bilateral en regiones frontales como la corteza cingulada anterior y los giros frontales superior, medio e inferior; asimismo, áreas posteriores como la corteza cingulada posterior y el cerebelo también mostraron gran activación bilateral. Estos resultados fortalecen la hipótesis de que cuando los expertos realizan tareas específicas de dominio activan sistemas cerebrales diferentes a los que usan los aficionados ejecutando la misma tarea. El uso del paradigma expertos-versus- novatos en imaginería cerebral contribuye a la búsqueda de sistemas cerebrales involucrados en procesos cognoscitivos.

Type
Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amizdic, O., Riehle, H.J., Fehr, T., Wienbruch, C., & Elbert, T. (2001). Pattern of focal gamma-bursts in chess players. Nature, 412, 603.Google Scholar
Atherton, M., Zhuang, J., Bart, W.M., Hu, X., & He, S. (2003). A functional MRI study of high-level cognition. I. The game of chess. Cognitive Brain Research, 16, 2631.CrossRefGoogle ScholarPubMed
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12, 147.CrossRefGoogle Scholar
Campitelli, G., & Gobet, F. (2005). The mind's eye in blindfold chess. European Journal of Cognitive Psychology, 17, 2345.CrossRefGoogle Scholar
Charness, N. (1976). Memory for chess positions: Resistance to interference. Journal of Experimental Psychology: Human Learning and Memory, 2, 641653.Google Scholar
Charness, N., Krampe, R.Th., & Mayr, U. (1996). The role of practice and coaching in entrepreneurial skill domains: An international comparison of life-span chess skill acquisition. In Ericsson, K.A. (Ed.), The road to excellence (pp. 5180). Mahwah, NJ: Erlbaum.Google Scholar
Chase, W.G., & Simon, H.A. (1973a). The mind's eye in chess. In Chase, W.G. (Ed.), Visual information processing (pp. 215281). Academic Press, New York.CrossRefGoogle Scholar
Chase, W.G., & Simon, H.A. (1973b). Perception in chess. Cognitive Psychology, 4, 5581.CrossRefGoogle Scholar
Cocosco, C.A., Kollokian, V., Kwan, R.K.S., & Evans, A.C. (1997). Brainweb: Online interface to a 3D MRI simulated brain database, Neuro-Image, 5, 425.Google Scholar
Cranberg, L.D., & Albert, M.L. (1988). The chess mind. In Kobler, L. & Fein, D. (Eds.). The exceptional brain. Neuropsychology of talent and special abilities (pp. 156190). New York: Guilford Press.Google Scholar
De Groot, A.D. (1946/1978). Thought and choice in chess, 2nd ed., The Hague: Mouton.Google Scholar
De Groot, A., & Gobet, F. (1996) Perception and memory in chess. Assen, Holland: Van Gorcum.CrossRefGoogle Scholar
Elo, A.E. (1978) The rating of chessplayers. Past and present. New York: Arco.Google Scholar
Ericsson, K.A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102, 211245.CrossRefGoogle ScholarPubMed
Ericsson, K.A., Krampe, R.Th., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363406.CrossRefGoogle Scholar
Friston, K.J., Holmes, A.P., Worsley, K.J., Pioline, J.B., Frith, C.D., & Frackowiak, R.S.J. (1995). Statistical parametric maps in functional imaging: A general linear approach, Human Brain Mapping, 2, 189210.CrossRefGoogle Scholar
Gobet, F. (1998). Chess players' thinking revisited. Swiss Journal of Psychology, 57, 1832.Google Scholar
Gobet, F., De Voogt, A., & Retschitzki, J. (2004). Moves in mind. The psychology of board games, Hove, UK: Psychology Press.CrossRefGoogle Scholar
Gobet, F., & Jansen, P. (1994). Towards a chess program based on a model of human memory. In Herik, H.J.V. d., Herschberg, I.S., & Uiterwijk, J.W.H.M. (Eds.), Advances in computer chess 7 (pp. 3558). Maastricht, Holland: University of Limburg Press.Google Scholar
Gobet, F., Lane, P.C.R., Croker, S., Cheng, P.C.H., Jones, G., Oliver, I., & Pine, J.M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236243.CrossRefGoogle ScholarPubMed
Gobet, F., & Simon, H.A. (1996a). Recall of rapidly presented random chess positions is a function of skill. Psychonomic Bulletin & Review, 2, 159163.CrossRefGoogle Scholar
Gobet, F., & Simon, H.A. (1996b). Templates in chess memory: A mechanism for recalling several boards. Cognitive psychology, 31, 140.CrossRefGoogle ScholarPubMed
Gobet, F., & Simon, H.A. (2000). Five seconds or sixty? Presentation time in expert memory. Cognitive Science, 24, 651682.CrossRefGoogle Scholar
Lancaster, J.L., Summerln, J.L., Rainey, L., Freitas, C.S., & Fox, P.T. (1997). The Talairach Daemon, a database server for Talairach Atlas Labels. Neuroimage, 5, S633.Google Scholar
Lane, P.C.R., Cheng, P.C.H., & Gobet, F. (2001). Learning perceptual chunks for problem decomposition. Proceedings of the Twenty-Third Meeting of the Cognitive Science Society (pp. 528533). Mahwah, NJ: Erlbaum.Google Scholar
Newell, A., & Simon, H.A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Nichelli, P., Grafman, J., Pietrini, P., Alway, D., Carton, J.C., & Miletich, R. (1994). Brain activity in chess playing, Nature, 369, 191.CrossRefGoogle ScholarPubMed
Onofrj, M., Curatola, L., Valentini, G., Antonelli, M., Thomas, A., & Fulgente, T. (1995). Non-dominant dorsal-prefrontal activation during chess problem solution evidenced by single photon emission computerized tomography (SPECT), Neuroscience Letters, 198, 169172.CrossRefGoogle ScholarPubMed
Saariluoma, P. (1991). Aspects of skilled imagery in blindfold chess. Acta Psychologica, 77, 6589.CrossRefGoogle ScholarPubMed
Saariluoma, P., & Kalakoski, V. (1997). Skilled imagery and longterm working memory. American Journal of Psychology, 110, 177201.CrossRefGoogle Scholar
Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. Stuttgart: George Thieme Verlag.Google Scholar