Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:27:23.338Z Has data issue: false hasContentIssue false

A Neurocognitive Approach to the Study of Private Speech

Published online by Cambridge University Press:  10 April 2014

Dolors Girbau*
Affiliation:
Universitat de Jaume I, Spain
*
Correspondence concerning this article should be addressed to Dolors Girbau, Departamento de Psicología Básica, Clínica y Biológica, Universitat de Jaume I, Campus Riu Sec, 12071 Castelló, Spain. E-mail: [email protected].

Abstract

The paper presents the current state of the art of research identifying the neurophysiological and neuroanatomical substrates of private speech, both in typical and clinical (or atypical) populations. First, it briefly describes the evolution of private speech research, which goes from classic traditions as the naturalistic and referential paradigms to the neurocognitive approach. An overview of the neurophysiological (e.g., event-related potentials or ERPs) and neuroimaging techniques (e.g., functional magnetic resonance imaging or fMRI) is also presented. The next three sections review empirical works about the neurocognitive basis of private speech, across three groups of techniques: ERPs; fMRI/MRI; and other neuroimaging techniques (positron emission tomography [PET], magnetoencephalogram [MEG], and repetitive transcranial magnetic stimulation [rTMS]). Such neurocognitive research analyzes the neural activity of individuals during a variety of task settings, including spontaneous and instructed overt and inner private speech use, subvocal verbalizations, and silent and overt reading. The fifth section focuses on electrophysiological and neuroimaging studies of private speech in atypical populations, for example: schizophrenia, pure alexia, hearing impairment, blindness, social phobia, alexithymia, Parkinson, and multiple sclerosis. The neurocognitive study of the various forms of private speech appears to be very promising in the understanding of these pathologies. Lastly, the advances and new challenges in the field are discussed.

Este trabajo presenta el estado actual de la investigación que identifica los sustratos neurofisiológicos y neuroanatómicos del lenguaje privado, tanto en poblaciones típicas como en clínicas (o atípicas). Primero describe brevemente la evolución de la investigación del lenguaje privado, que van desde las tradiciones clásicas como los paradigmas naturalistas y referenciales al abordaje neurocognitivo. También se presenta una revisión de las técnicas neurofisiológicas (por ejemplo, potenciales relacionados con eventos o ERPs) y de neuroimagen (por ejemplo, imagen de resonancia magnética funcional o fMRI). Las siguientes tres secciones revisan los trabajos empíricos sobre la base neurocognitiva del lenguaje privado a través de tres grupos de técnicas: ERPs; fMRI/MRI; y otras técnicas de neuroimagen (tomografía de emisión de positrones [PET], magnetoencefalograma [MEG] y la estimulación magnética repetitiva transcraneal [rTMS]). Esta investigación neurocognitiva analiza la actividad neuronal de los individuos durante diversas tareas, incluyendo el uso del lenguaje privado espontáneo y observable bajo instrucciones y el lenguaje privado interno, las verbalizaciones subvocales y la lectura silenciosa y observable. La quinta sección se centra en los estudios electrofisiológicos y de neuroimágenes del lenguaje privado en poblaciones atípicas, por ejemplo, esquizofrenia, alexia pura, hipoacusia, ceguera, fobia social, alexithymia, Parkinson, y esclerosis múltiple. El estudio neurocognitivo de varias formas del lenguaje privado parece muy prometedor para la comprensión de estas patologías. Por último, se comentan los avances y los nuevos retos en el campo.

Type
Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermann, H., & Riecker, A. (2004). The contribution of the insula to motor aspects of speech production: A review and a hypothesis. Brain & Language, 89, 320328.CrossRefGoogle ScholarPubMed
Ackermann, H., Riecker, A., Mathiak, K., Erb, M., Grodd, W., & Wildgruber, D. (2001). Rate-dependent activation of a prefrontal-insular-cerebellar network during passive listening to trains of click stimuli: An fMRI study. Neuroreport: An International Journal for the Rapid Communication of Neuroscience Research, 12, 40874092.CrossRefGoogle ScholarPubMed
Ackermann, H., Wildgruber, D., Daum, I., & Grodd, W. (1998). Does the cerebellum contribute to cognitive aspects of speech production? A functional magnetic resonance imaging (fMRI) study in humans. Neuroscience Letters, 247, 187190.CrossRefGoogle ScholarPubMed
Baciu, M.V., Rubin, C., Décorps, M.A., & Segebarth, C.M. (1999). fMRI assessment of hemispheric language dominance using a simple inner speech paradigm. NMR in biomedicine, 12, 293298.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Baddeley, A.D. (2002). Is working memory still working? European Psychologist, 7, 8597.CrossRefGoogle Scholar
Bentaleb, L.A., Beauregard, M., Liddle, P., & Stip, E. (2002). Cerebral activity associated with auditory verbal hallucinations: A functional magnetic resonance imaging case study. Journal of Psychiatry & Neuroscience, 27, 110115.Google ScholarPubMed
Bone, R.B. (2002). Functional neuroimaging of implicit and explicit reading in patients with pure alexia. Dissertation Abstracts International. Section B: The Sciences & Engineering, 62, 3793.Google Scholar
Brown, C.M., & Hagoort, P. (Eds.). (1999). The neurocognition of language. Oxford, UK: Oxford University Press.Google Scholar
Bullmore, E., Horwitz, B., Honey, G., Brammer, M., Williams, S., & Sharma, T. (2000). How good is good enough in path analysis of fMRI data? NeuroImage, 11, 289301.CrossRefGoogle ScholarPubMed
Caplan, D., Alpert, N., Waters, G., & Olivieri, A. (2000). Activation of Broca's area by syntactic processing under conditions of concurrent articulation. Human Brain Mapping, 9, 6571.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Casey, B.J. (2002). Neuroscience. Windows into the human brain. Science, 296, 14081409.CrossRefGoogle ScholarPubMed
Chatrian, G.E., Lettich, E., & Nelson, P.L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activity. American Journal of EEG Technology, 25, 8392.CrossRefGoogle Scholar
Clark, V.P., Fannon, S., Lai, S., & Benson, R. (2001). Paradigm-dependent modulation of event-related fMRI activity evoked by the oddball task. Human Brain Mapping, 14, 116127.CrossRefGoogle ScholarPubMed
David, A.S. (1999). Auditory hallucinations: Phenomenology, neuropsychology and neuroimaging update. Acta Psychiatrica Scandinavica Supplementum, 99, 95104.CrossRefGoogle Scholar
Desmond, J.E., Gabrieli, J.D., Wagner, A.D., Ginier, B.L., & Glover, G.H. (1997). Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 17, 96759685.CrossRefGoogle ScholarPubMed
Diaz, R.M., & Berk, L.E. (Eds.). (1992). Private speech: From social interaction to self-regulation. Hillsdale, NJ: Erlbaum.Google Scholar
Duncan, R.M., & Cheyne, J.A. (2001). Private speech in young adults: Task difficulty, self-regulation, and psychological predication. Cognitive Development, 16, 889906.Google Scholar
Font, M., Parellada, E., Fernández-Egea, E., Bernardo, M., & Lomeña, F. (2003). Neuroimagen funcional de las alucinaciones auditivas en la esquizofrenia. Actas Españolas de Psiquiatría, 31, 39.Google Scholar
Ford, J.M., & Mathalon, D.H. (2004). Electrophysiological evidence of corollary discharge dysfunction in schizophrenia during talking and thinking. Journal of Psychiatric Research, 38, 3746.CrossRefGoogle ScholarPubMed
Ford, J.M., Mathalon, D.H., Heinks, T., Kalba, S., Faustman, W.O., & Roth, W.T. (2001). Neurophysiological evidence of corollary discharge dysfunction in schizophrenia. American Journal of Psychiatry, 158, 20692071.CrossRefGoogle ScholarPubMed
Ford, J.M., Mathalon, D.H., Kalba, S., Whitfield, S., Faustman, W.O., & Roth, W.T. (2001a). Cortical responsiveness during inner speech in schizophrenia: An event-related potential study. American Journal of Psychiatry, 158, 19141916.CrossRefGoogle ScholarPubMed
Ford, J.M., Mathalon, D.H., Kalba, S., Whitfield, S., Faustman, W.O., & Roth, W.T. (2001b). Cortical responsiveness during talking and listening in schizophrenia: An event-related brain potential study. Biological Psychiatry, 50, 540549.CrossRefGoogle ScholarPubMed
Ford, J.M., Mathalon, D.H., Whitfield, S., Faustman, W.O., & Roth, W.T. (2002). Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biological Psychiatry, 51, 485492.CrossRefGoogle ScholarPubMed
Fujimaki, N., Hayakawa, T., Matani, A., & Okabe, Y. (2004). Right-lateralized neural activity during inner speech repeated by cues. Neuroreport: An International Journal for the Rapid Communication of Neuroscience Research, 15, 23412345.CrossRefGoogle ScholarPubMed
Fujimaki, N., Kuriki, S., Nakajima, H., Konychev, V. A., & Musha, T. (1997). Event-related potentials and equivalent current dipoles in silent speech using a vowel and word. Journal of Psychophysiology, 11, 1220.Google Scholar
Fujimaki, N., Takeuchi, F., Kobayashi, T., Kuriki, S., & Hasuo, S. (1994). Event-related potentials in silent speech. Brain Topography, 6, 259267.CrossRefGoogle ScholarPubMed
Garnsey, S.M. (1993). Event-related brain potentials in the study of language: An introduction. Language & Cognitive Processes, 8, 337356.CrossRefGoogle Scholar
Gehring, W.J., Bryck, R.L., Jonides, J., Albin, R.L., & Badre, D. (2003). The mind's eye, looking inward? In search of executive control in internal attention shifting. Psychophysiology, 40, 572585.CrossRefGoogle ScholarPubMed
Girbau, D. (1996). Private and social speech in communication: Terminology and distinctive traits. Journal of Psycholinguistic Research, 25, 507513.CrossRefGoogle Scholar
Girbau, D. (1997). El lenguaje privado y social en la comunicación referencial ecológica infantil. In Boada, H. & Forns, M., (Eds.), Referential communication: An ecological perspective [Special Issue]. Anuario de Psicología, 75, 5975.Google Scholar
Girbau, D. (2001). Children's referential communication failure: The ambiguity and abbreviation of message. In Giles, H. & Bradac, J.J. (Eds.), Language, education and social dynamics: The legacy of W. Peter Robinson [Special Issue]. Journal of Language and Social Psychology, 20, 8189.CrossRefGoogle Scholar
Girbau, D. (2002a). Psicología de la comunicación. Barcelona: Ariel.Google Scholar
Girbau, D. (2002b). Private and social speech in children's dyadic communication in naturalistic context. Anuario de Psicología, 33, 339354.Google Scholar
Girbau, D. (2002c). A sequential analysis of private and social speech in children's dyadic communication. The Spanish Journal of Psychology, 5, 110118.CrossRefGoogle ScholarPubMed
Girbau, D. (2004). New directions in Psycholinguistics and Communication Sciences: Neurocognitive processes and genetic bases of human communication. SpeechPathology.com, 8/16/2004. San Antonio, TX.Google Scholar
Girbau, D., & Boada, H. (1996). Private meaning and comparison process in children's referential communication. Journal of Psycholinguistic Research, 25, 379392.CrossRefGoogle Scholar
Girbau, D., & Boada, H. (2004). Accurate referential communication and its relation with private and social speech in a naturalistic context. The Spanish Journal of Psychology, 7, 8192.CrossRefGoogle Scholar
Gizewski, E.R., Timmann, D., & Forsting, M. (2004). Specific cerebellar activation during Braille reading in blind subjects. Human Brain Mapping, 22, 229235.CrossRefGoogle ScholarPubMed
Gruber, O., Kleinschmidt, A., Binkofski, F., Steinmetz, H., & von Cramon, D.Y. (2000). Cerebral correlates of working memory for temporal information. Neuroreport: An International Journal for the Rapid Communication of Neuroscience Research, 11, 16891693.CrossRefGoogle ScholarPubMed
Halpern, A.R., Zatorre, R.J., Bouffard, M., & Johnson, J.A. (2004). Behavioral and neural correlates of perceived and imagined musical timbre. Neuropsychologia, 42, 12811292.CrossRefGoogle ScholarPubMed
Hirsch, J. (2003). Imaging and biological function in health and disease. Journal of Clinical Investigation, 111, 14401443.CrossRefGoogle ScholarPubMed
Huttenlocher, P.R., & Dabholkar, A.S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167178.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Jasper, H.H. (1958). The ten-twenty electrode system of the International Federation, Electroencephalography and Clinical Neurophysiology, 10, 371375.Google Scholar
Jezzard, P., Matthews, P. M., & Smith, S.M. (Eds.). (2002). Functional MRI: An introduction to methods. Oxford, UK: Oxford University Press.Google Scholar
Junginger, J. & Rauscher, F.P. (1987). Vocal activity in verbal hallucinations. Journal of Psychiatric Research, 21, 101109.CrossRefGoogle ScholarPubMed
Kawashima, R., Okuda, J., Umetsu, A., Sugiura, M., Inoue, K., Suzuki, K., Tabuchi, M., Tsukiura, T., Narayan, S.L., Nagasaka, T., Yanagawa, I., Fujii, T., Takahashi, S., Fukuda, H., & Yamadori, A. (2000). Human cerebellum plays an important role in memory-timed finger movement: An fMRI study. Journal of neurophysiology, 83, 10791087.CrossRefGoogle ScholarPubMed
Kelman, C.A. (2001). Egocentric language in deaf children. American Annals of the Deaf, 146, 276279.CrossRefGoogle ScholarPubMed
Kim, K.H.S., Relkin, N.R., Lee, K.M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388, 171174.CrossRefGoogle ScholarPubMed
Kutas, M., Federmeier, K.D., Coulson, S., King, J.W., & Münte, T.F. (2000). Language. In Cacciopo, J.T., Tassinari, L.G., & Bernston, G.G. (Eds.), Handbook of psychophysiology (pp. 576601). Cambridge, UK: Cambridge University Press.Google Scholar
Lang, W., Starr, A., Lang, V., & Lindinger, G. (1992). Cortical DC potential shifts accompanying auditory and visual short-term memory. Electroencephalography & Clinical Neurophysiology, 82, 285295.CrossRefGoogle ScholarPubMed
Logie, R.H., Venneri, A., Della Sala, S., Redpath, T.W., & Marshall, I. (2003). Brain activation and the phonological loop: The impact of rehearsal. Brain and Cognition, 53, 293296.CrossRefGoogle ScholarPubMed
Logothetis, N.K. (2003). The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. In Parker, A., Derrington, A., & Blakemore, C. (Eds.), The physiology of cognitive processes (pp. 62116). Oxford, UK: Oxford University Press.Google Scholar
MacSweeney, M., Amaro, E., Calvert, G.A., Campbell, R., David, A.S., McGuire, P., Williams, S.C.R., Woll, B., & Brammer, M.J. (2000). Silent speechreading in the absence of scanner noise: An event-related fMRI study. Neuroreport: An International Journal for the Rapid Communication of Neuroscience Research, 11, 17291733.CrossRefGoogle ScholarPubMed
McGuire, P.K., Robertson, D., Thacker, A, David, A.S., Kitson, M., Frackowiak, R.S.J., & Frith, C.D. (1997). Neural correlates of thinking in sign language. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience, 8, 695698.CrossRefGoogle ScholarPubMed
McGuire, P.K., Silbersweig, D.A., Murray, R.M., David, A.S., Frackowiak, R.S., & Frith, C.D. (1996). Functional anatomy of inner speech and auditory verbal imagery. Psychological medicine, 26, 2938.CrossRefGoogle ScholarPubMed
Papaioannou, A., Ballon, F., Theodorakis, Y., & Vanden, A.Y. (2004). Combined effect of goal setting and self-talk in performance of a soccer-shooting task. Perceptual & Motor Skills, 98, 8999.CrossRefGoogle ScholarPubMed
Petrovich, N., Holodny, A. I., Tabar, V., Correa, D.D., Hirsch, J., Gutin, P.H., & Brennan, C.W. (2005). Discordance between silent speech fMRI and intraoperative speech arrest, Neurosurgery, 103, 267274.CrossRefGoogle ScholarPubMed
Piaget, J. (1968). Le langage et la pensée chez l'enfant. Etudes sur la logique de l'enfant [The language and thought of the child] (7th ed.). Neuchâtel, Switzerland: Delachaux et Niestlé. (Original work published 1923.)Google Scholar
Pihan, H., Altenmüller, E., Hertrich, I., & Ackermann, H. (2000). Cortical activation patterns of affective speech processing depend on concurrent demands on the subvocal rehearsal system. A DC-potential study, Brain, 123, 23382349.Google ScholarPubMed
Riecker, A., Ackermann, H., Wildgruber, D., Dogil, G., & Grodd, W. (2000). Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. NeuroReport: An International Journal for the Rapid Communication of Neuroscience Research 11, 19972000.CrossRefGoogle ScholarPubMed
Savoy, R.L. (2005). Experimental design in brain activation MRI: Cautionary tales. Brain Research Bulletin, 67, 361367.CrossRefGoogle ScholarPubMed
Schlaggar, B.L., Brown, T.T., Lugar, H.M., Visscher, K.M., Miezin, F.M., & Petersen, S.E. (2002). Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 14761479.CrossRefGoogle ScholarPubMed
Schönfeldt-Lecuona, C., Grön, G., Walter, H., Büchler, N., Wunderlich, A., Spitzer, M., & Herwig, U. (2004). Stereotaxic rTMS for the treatment of auditory hallucinations in schizophrenia. Neuroreport: An International Journal for the Rapid Communication of Neuroscience Research, 15, 16691673.CrossRefGoogle ScholarPubMed
Shergill, S.S., Brammer, M.J., Fukuda, R., Bullmore, E., Amaro, E., Murray, R.M., & McGuire, P.K. (2002). Modulation of activity in temporal cortex during generation of inner speech. Human Brain Mapping, 16, 219227.CrossRefGoogle ScholarPubMed
Shergill, S.S., Bullmore, E.T., Brammer, M.J., Williams, S.C.R., Murray, R.M., & McGuire, P.K. (2001). A functional study of auditory verbal imagery. Psychological Medicine, 31, 241253.CrossRefGoogle ScholarPubMed
Small, S.L., Flores, D.K., & Noll, D.C. (1998). Different neural circuits subserve reading before and after therapy for acquired dyslexia. Brain and Language, 62, 298308.CrossRefGoogle ScholarPubMed
Tillfors, M., Furmark, T., Marteinsdottir, I., & Fredrikson, M. (2002). Cerebral blood flow during anticipation of public speaking in social phobia: A PET study. Biological Psychiatry, 52, 11131119.CrossRefGoogle ScholarPubMed
Vygotsky, L.S. (1987). The collected works of L. S. Vygotsky: Vol. 1. Problems of general psychology. Including the Volume Thinking and Speech. (Rieber, R.W. & Carton, A.S., Eds.; N. Minick, Trans.). New York: Plenum Press. (Original work published 1934.)Google Scholar
Watson, J.B. (1983). Psychology from the standpoint of a behaviourist. London: Frances Pinter. (Original work published 1919.)Google Scholar
Welchew, D.E., Honey, G.D., Sharma, T., Robbins, T.W., & Bullmore, E.T. (2002). Multidimensional scaling of integrated neurocognitive function and schizophrenia as a disconnexion disorder. NeuroImage, 17, 12271239.CrossRefGoogle ScholarPubMed
Yamazaki, T., Kamijo, K., Kenmochi, A., Fukuzumi, S., Kiyuna, T., Takaki, Y., & Kuroiwa, Y. (2000). Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topography, 12, 159175.CrossRefGoogle ScholarPubMed
Yamazaki, T., Kamijo, K., Kiyuna, T., Takaki, Y., & Kuroiwa, Y. (2001). Multiple dipole analysis of visual event-related potentials during oddball paradigm with silent counting. Brain Topography, 13, 161168.CrossRefGoogle ScholarPubMed
Zivin, G. (Ed.). (1979). The development of self-regulation through private speech. New York: Wiley.Google Scholar