Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T14:30:16.978Z Has data issue: false hasContentIssue false

Naming and Categorization in Healthy Participants: Crowded Domains and Blurred Effects of Gender

Published online by Cambridge University Press:  20 September 2016

Francisco Javier Moreno-Martínez*
Affiliation:
Universidad Nacional de Educación a Distancia (Spain)
Iván Moratilla-Pérez
Affiliation:
Universidad Nacional de Educación a Distancia (Spain)
*
*Correspondence concerning this article should be addressed to F. Javier Moreno-Martínez. Universidad Nacional de Educación a Distancia. C/ Juan del Rosal, 10. 28040. Madrid (Spain). Phone: 34–913988853. Fax: 34–913987972. E-mail: [email protected]

Abstract

The study of category-specific effects has produced compelling insights into the structure, organization and functioning of cognitive processes. According to some accounts, the greater intra-category structural similarity for living things (LT) contributes to faster access to superordinate pictorial information, making LT easier to classify than structurally dissimilar items (i.e., nonliving things: NLT). Conversely, LT would be harder to name than NLT, as they must compete with within-domain structurally similar items in order to be properly discriminated. Additionally, it has been reported that men perform better with NLT than women, whereas women surpass men with LT but the reasons for this remain unclear. In the current study, we explored both the visual crowding hypothesis and the effects of gender by testing the performance of 40 healthy participants in classification and naming tasks. Analyses revealed that LT were classified significantly faster than NLT (ηp2 = .11), but named significantly slower (ηp2 = .25). Interestingly, the same results persisted after removing atypical categories that are known to distort the interpretation of data from the analyses. Moreover, we did not find the expected effects of gender. Men were more accurate than women naming NLT (ηp2 = .13), and women did not surpass men in any task.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Astor, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual water task: A large and reliable sex difference. Behavioral Brain Research, 93, 185190.CrossRefGoogle Scholar
Barbarotto, R., Capitani, E., & Laiacona, M. (2001). Living musical instruments and inanimate body parts? Neuropsychologia, 39, 406414. http://dx.doi.org/10.1016/S0028-3932(00)00128-7 CrossRefGoogle ScholarPubMed
Barbarotto, R., Laiacona, M., Macchi, V., & Capitani, E. (2002). Picture reality decision, semantic categories and gender – a new set of pictures, with norms and an experimental study. Neuropsychologia, 40, 16371653.CrossRefGoogle Scholar
Bermeitinger, C., Wentura, D., & Frings, C. (2008). Nature and facts about natural and artifactual categories: Sex differences in the semantic priming paradigm. Brain and Language, 106, 153163. http://dx.doi.org/10.1016/j.bandl.2008.03.003 CrossRefGoogle ScholarPubMed
Biggs, T. C., & Marmurek, H. H. C. (1990). Picture and word naming: Is facilitation due to processing overlap? The American Journal of Psychology, 103, 81110. http://dx.doi.org/10.2307/1423260 CrossRefGoogle Scholar
Brousseau, G., & Buchanan, L. (2004). Semantic category effect and emotional valence in female university students. Brain and Language, 90, 241248. http://dx.doi.org/10.1016/S0093-934X(03)00437-1 CrossRefGoogle ScholarPubMed
Bryden, M. (1979). Evidence for sex differences in cerebral organization. In Witting, M. & Peterson, A. (Eds.), Determinants of sex-related differences in cognitive functioning (pp. 121143). New York, NY: Academic Press.Google Scholar
Burton, L. A., Henninger, D., & Hafetz, J. (2005). Gender differences in relations of mental rotation, verbal fluency, and SAT scores to finger length ratios as hormonal indexes. Developmental Neuropsychology, 28, 493505. http://dx.doi.org/10.1207/s15326942dn2801_3 CrossRefGoogle ScholarPubMed
Capitani, E., Laiacona, M., & Barbarotto, R. (1999). Gender affects word retrieval of certain categories in semantic fluency tasks. Cortex, 35, 273278. http://dx.doi.org/10.1016/S0010-9452(08)70800-1 CrossRefGoogle ScholarPubMed
Capitani, E., Laiacona, M., Mahon, B., & Caramazza, A. (2003). What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cognitive Neuropsychology, 20, 213261. http://dx.doi.org/10.1080/02643290244000266 CrossRefGoogle ScholarPubMed
Caplan, P. J., Crawford, M., Hyde, J. S., & Richardson, J. T. E. (1997). Gender differences in human cognition. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Caramazza, A., & Shelton, J. R. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience 10, 134. http://dx.doi.org/10.1162/089892998563752 CrossRefGoogle ScholarPubMed
Collins, D. W., & Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 111, 845849. http://dx.doi.org/10.1037/0735-7044.111.4.845 CrossRefGoogle ScholarPubMed
Coppens, P., & Frisinger, D. (2005). Category-specific naming effect in non-brain-damaged individuals. Brain and Language, 94, 6171. http://dx.doi.org/10.1016/j.bandl.2004.11.008 CrossRefGoogle ScholarPubMed
Delgado, A. R., & Prieto, G. (1996). Sex differences in visuospatial ability. Do performance factors play such an important role? Memory and Cognition, 24, 504510. http://dx.doi.org/10.3758/BF03200938 CrossRefGoogle ScholarPubMed
Filliter, J. H., McMullen, P. A., & Westwood, D. (2005). Manipulability and living/non-living category effects on object recognition. Brain & Cognition, 57, 6165.CrossRefGoogle Scholar
Funnell, E., & Sheridan, J. (1992). Categories of knowledge? Unfamiliar aspects of living and nonliving things. Cognitive Neuropsychology, 9, 135153. http://dx.doi.org/10.1080/02643299208252056 CrossRefGoogle Scholar
Gaffan, D., & Heywood, C. A. (1993). A spurious category-specific visual agnosia for living things in normal human and nonhuman primates. Journal of Cognitive Neuroscience, 5, 118128. http://dx.doi.org/10.1162/jocn.1993.5.1.118 CrossRefGoogle ScholarPubMed
Gainotti, G. (2000). What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: A review. Cortex, 36, 539559. http://dx.doi.org/10.1016/S0010-9452(08)70537-9 CrossRefGoogle ScholarPubMed
Gainotti, G. (2005). The influence of gender and lesion location on naming disorders for animals, plants and artefacts. Neuropsychologia, 43, 16331644. http://dx.doi.org/10.1016/j.neuropsychologia.2005.01.016 CrossRefGoogle ScholarPubMed
Gainotti, G. (2010). The influence of anatomical locus of lesion and of gender-related familiarity factors in category-specific semantic disorders for animals, fruits and vegetables: A review of single-case studies. Cortex, 46, 10721087. http://dx.doi.org/10.1016/j.cortex.2010.04.002 CrossRefGoogle ScholarPubMed
Gale, T. M., Laws, K. R., & Foley, K. (2006). Crowded and sparse domains in object recognition: Consequences for categorisation and naming. Brain and Cognition, 60, 139145. http://dx.doi.org/10.1016/j.bandc.2005.10.003 CrossRefGoogle ScholarPubMed
Gerlach, C. (2001). Structural similarity causes different category-effects depending on tasks characteristics. Neuropsychologia, 39, 895900. http://dx.doi.org/10.1016/S0028-3932(01)00031-8 CrossRefGoogle Scholar
Gerlach, C., & Marques, J. F. (2014). Visual complexity exerts opposing effects on object categorization and identification. Visual Cognition, 22, 751769. http://dx.doi.org/10.1080/13506285.2014.915908 CrossRefGoogle Scholar
Halpern, D. F. (2000). Sex differences and cognitive abilities. Mahwah, NJ: Erlbaum.CrossRefGoogle Scholar
Harris, L. (1978). Sex differences and spatial ability: Possible environmental, genetic and neurological factors. In Kinsbourne, K. (Ed.), Asymmetrical function of the brain (pp. 405522). London, UK: Cambridge University Press.Google Scholar
Humphreys, G. W., & Forde, E. M. E. (2001). Hierarchies, similarity, and interactivity in object recognition: “Category-specific” neuropsychological deficits. Behavioral and Brain Sciences, 24, 453509.CrossRefGoogle ScholarPubMed
Humphreys, G. W., Riddoch, M. J., & Quinlan, P. T. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5, 67104. http://dx.doi.org/10.1080/02643298808252927 CrossRefGoogle Scholar
Hutt, C. (1979). Cerebral asymmetry and hemispheric specialization–some implications of sex differences. International Journal of Behavioral Development, 2, 7386.CrossRefGoogle Scholar
Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta-analysis. Psychological Bulletin, 104, 5369. http://dx.doi.org/10.1037/0033-2909.104.1.53 CrossRefGoogle Scholar
Kimura, D. (1999). Sex and cognition. Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Låg, T. (2005). Category-specific effects in object identification: What is ‘normal’? Cortex, 41, 833841.CrossRefGoogle Scholar
Laiacona, M., & Barbarotto, R. (2005). On double dissociations, controls and gender: Some neglected data about category specificity. Cortex, 41, 858859. http://dx.doi.org/10.1016/S0010-9452(08)70307-1 CrossRefGoogle ScholarPubMed
Laiacona, M., Barbarotto, R., & Capitani, E. (1998). Semantic category dissociations in naming: Is there a gender effect in Alzheimer’s disease? Neuropsychologia, 36, 407419. http://dx.doi.org/10.1016/S0028-3932(97)00125-5 CrossRefGoogle Scholar
Laiacona, M., Luzzatti, C., Zonca, G., Guarnaschelli, C., & Capitani, E. (2001). Lexical and semantic factors influencing picture naming in aphasia. Brain and Cognition, 46, 184187. http://dx.doi.org/10.1016/S0278-2626(01)80061-0 CrossRefGoogle ScholarPubMed
Laws, K. R. (1999). Gender affects naming latencies for living and nonliving things: Implications for familiarity. Cortex, 35, 729733. http://dx.doi.org/10.1016/S0010-9452(08)70831-1 CrossRefGoogle ScholarPubMed
Laws, K. R. (2000). Category-specific naming errors in normal subjects: The influence of evolution and experience. Brain and Language, 75, 123133. http://dx.doi.org/10.1006/brln.2000.2348 CrossRefGoogle ScholarPubMed
Laws, K. R. (2004). Sex differences in lexical size across semantic categories. Personality and Individual Differences, 36, 2332. http://dx.doi.org/10.1016/S0191-8869(03)00048-5 CrossRefGoogle Scholar
Laws, K. R. (2005). Illusions of normality: A methodological critique of category specific naming. Cortex, 41, 842851. http://dx.doi.org/10.1016/S0010-9452(08)70303-4 CrossRefGoogle ScholarPubMed
Laws, K. R., Adlington, R. L., Moreno-Martinez, F. J., & Gale, T. M. (2010). Category-specificity: Evidence for modularity of mind. Hauppauge, NY: Nova Science Publishers.Google Scholar
Laws, K. R., & Gale, T. M. (2002). Category-specific naming and the visual characteristics of line-drawn stimuli. Cortex, 38, 721. http://dx.doi.org/10.1016/S0010-9452(08)70635-X CrossRefGoogle ScholarPubMed
Laws, K. R., Gale, T. M., Leeson, V. C., & Crawford, J. R. (2005). When is category specific in Alzheimer’s disease? Cortex, 41, 452463.CrossRefGoogle ScholarPubMed
Laws, K. R., Gale, T. M., Moreno-Martínez, F. J., Adlington, R. L., Irvine, K., & Sthanakiya, S. (2009). Category-specific semantics in Alzheimer’s dementia and normal aging? In Alzheimer’s Disease Research Compendium (pp. 143164). Hauppauge, NY: Nova Science Publishers.Google Scholar
Laws, K. R., & Hunter, M. Z. (2006). The impact of colour, spatial resolution, and presentation speed on category naming. Brain and Cognition, 62, 8997. http://dx.doi.org/10.1016/j.bandc.2006.03.002 CrossRefGoogle ScholarPubMed
Laws, K. R., Leeson, V. C., & Gale, T. M. (2002). The effect of ‘masking’ on picture naming latencies. Cortex, 38, 137147.CrossRefGoogle Scholar
Laws, K. R., & Neve, C. (1999). A ‘normal’ category-specific advantage for naming living things. Neuropsychologia, 37, 12631269.CrossRefGoogle ScholarPubMed
Lloyd-Jones, T. J., & Humphreys, G. W. (1997a). Perceptual differentiation as a source of category effects in object processing: Evidence from naming and object decision. Memory and Cognition, 25, 1835. http://dx.doi.org/10.3758/BF03197282 CrossRefGoogle ScholarPubMed
Lloyd-Jones, T. J., & Humprheys, G. W. (1997b). Categorizing chairs and naming pears: Category differences in object processing as a function of task and priming. Memory and Cognition, 25, 606624. http://dx.doi.org/10.3758/BF03211303 CrossRefGoogle ScholarPubMed
Marra, C., Ferraccioli, M., & Gainotti, G. (2007). Gender-related dissociations of categorical fluency in normal subjects and in subjects with Alzheimer’s disease. Neuropsychology, 21, 207211.CrossRefGoogle ScholarPubMed
McGlone, J. (1980). Sex differences in human brain asymmetry: A critical survey. Behavioral and Brain Sciences, 3, 215227. http://dx.doi.org/10.1017/S0140525X00004398 CrossRefGoogle Scholar
McKenna, P., & Parry, R. (1994). Category-specificity in the naming of natural and man-made objects: Normative data from adults and children. Neuropsychological Rehabilitation, 4, 255281. http://dx.doi.org/10.1080/09602019408401461 CrossRefGoogle Scholar
Moreno-Martinez, F. J., Goñi-Imízcoz, M., & Spitznagel, M. B. (2011). Domain or not domain? That is the question: Longitudinal semantic deterioration in Alzheimer’s disease. Brain & Cognition, 77, 8995. http://dx.doi.org/10.1016/j.bandc.2011.05.006 CrossRefGoogle ScholarPubMed
Moreno-Martínez, F. J., & Laws, K. R. (2007). An attenuation of the ‘normal’ category effect in patients with Alzheimer’s disease: A review and bootstrap analysis. Brain & Cognition, 63, 136142.Google ScholarPubMed
Moreno-Martínez, F. J., & Laws, K. R. (2008). No category specificity in Alzheimer’s disease: A normal aging effect. Neuropsychology, 22, 485490.CrossRefGoogle ScholarPubMed
Moreno-Martínez, F. J., Laws, K. R., & Schulz, J. (2008). The impact of dementia, age and sex on category fluency: Greater deficits in women with Alzheimer’s disease. Cortex, 44, 12561264. http://dx.doi.org/10.1016/j.cortex.2007.11.008 CrossRefGoogle ScholarPubMed
Moreno-Martínez, F. J., & Montoro, P. R. (2010). Longitudinal patterns of fluency impairment in dementia: The role of domain and “nuisance variables”. Aphasiology, 24, 13891399. http://dx.doi.org/10.1080/02687030903515370 CrossRefGoogle Scholar
Moreno-Martínez, F. J., & Montoro, P. R. (2012). An ecological alternative to Snodgrass & Vanderwart: 360 high quality colour images with norms for seven psycholinguistic variables. Plos One, 7, e37527. http://dx.doi.org/10.1371/journal.pone.0037527 CrossRefGoogle ScholarPubMed
Moreno-Martínez, F. J., & Rodríguez-Rojo, I. C. (2015). On colour, category effects and Alzheimer’s disease: A critical review of studies and further longitudinal evidence. Behavioural Neurology. Article ID 960725. http://dx.doi.org/10.1155/2015/960725 CrossRefGoogle ScholarPubMed
Parsons, T. D., Rizzo, A. A., van der Zaag, C., McGee, J. S., & Buckwalter, J. G. (2005). Gender and cognitive performance: A test of the common cause hypothesis. Aging, Neuropsychology and Cognition, 12, 7888.CrossRefGoogle Scholar
Price, C. J., & Humphreys, G. W. (1989). The effects of surface detail on object categorization and naming. Quarterly Journal of Experimental Psychology, 41, 797828. http://dx.doi.org/10.1080/14640748908402394 CrossRefGoogle ScholarPubMed
Salmon, J. P., Matheson, H. E., & McMullen, P. A. (2014). Photographs of manipulable objects are named more quickly than the same objects depicted as line-drawings: Evidence that photographs engage embodiment more than line-drawings. Frontiers in Psychology, 5, 1187. http://dx.doi.org/10.3389/fpsyg.2014.01187 CrossRefGoogle Scholar
Shaw, P., Brierley, B., & David, A. S. (2005). A critical period for the impact of amygdala damage on the emotional enhancement of memory? Neurology, 65, 326328. http://dx.doi.org/10.1212/01.wnl.0000168867.40688.9b CrossRefGoogle ScholarPubMed
Shelton, J. R., Fouch, E., & Caramazza, A. (1998). The selective sparing of body part knowledge: A case study. Neurocase, 4, 339351. http://dx.doi.org/10.1080/13554799808410631 CrossRefGoogle Scholar
Stewart, F., Parkin, A. J., & Hunkin, N. M. (1992). Naming impairments following recovery from herpes simplex encephalitis: Category-specific? The Quarterly Journal of Experimental Psychology, 44, 261284. http://dx.doi.org/10.1080/02724989243000037 CrossRefGoogle ScholarPubMed
Tanaka, J. W., & Presnell, L. M. (1999). Color diagnosticity in object recognition. Perception & Psychophysics, 61, 11401153. http://dx.doi.org/10.3758/BF03207619 CrossRefGoogle ScholarPubMed
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of memory (pp. 381402). New York, NY: Academic Press.Google Scholar
Wallentin, M. (2009). Putative sex differences in verbal abilities and language cortex: A critical review. Brain & Language, 108, 175183. http://dx.doi.org/10.1016/j.bandl.2008.07.001 CrossRefGoogle ScholarPubMed
Warrington, E. K., & McCarthy, R. A. (1987). Categories of knowledge: Further fractionations and an attempted integration. Brain, 110, 12731296. http://dx.doi.org/10.1093/brain/110.5.1273 CrossRefGoogle Scholar
Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107, 829853. http://dx.doi.org/10.1093/brain/107.3.829 CrossRefGoogle ScholarPubMed
Weiss, E. M., Kemmler, G., Deisenhammer, E. A., Fleischhacker, W. W., & Delazer, M. (2003). Sex differences in cognitive functions. Personality and Individual Differences, 35, 863875. http://dx.doi.org/10.1016/S0191-8869(02)00288-X CrossRefGoogle Scholar
Zannino, G. D., Perri, R., Caltagirone, C., & Carlesimo, G. A. (2007). Category-specific naming deficit in Alzheimer’s disease: The effect of a display by domain interaction. Neuropsychologia, 45, 18321839.CrossRefGoogle ScholarPubMed