Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T13:44:50.574Z Has data issue: false hasContentIssue false

Is the DeVries-Rose to Weber Transition Empirically Possible with Sine-Wave Gratings?

Published online by Cambridge University Press:  10 April 2014

Miguel A. García-Pérez*
Affiliation:
Universidad Complutense de Madrid
*
Address correspondence to: Miguel A. García-Pérez, Departamento de Metodología, Facultad de Psicología, Universidad Complutense, Campus de Somosaguas, 28223 Madrid (Spain). Phone: +34 913 943 061. Fax: +34 913 943 189. E-mail: [email protected]

Abstract

Visual functioning at various retinal illuminance levels is usually measured either by determining grating acuity as a function of light level or by determining how sensitivity to sine-wave gratings changes with retinal illuminance. The former line of research has shown that grating acuity follows a two-branch relationship with retinal illuminance, with the point of discontinuity occurring at the transition from scotopic to photopic vision. Results of the latter line of research have summarily been described as a transition from the DeVries-Rose law to Weber's law, according to which log sensitivity increases linearly with log illuminance with a slope of 0.5 over a range of low illuminances (the DeVries-Rose range) and then levels off and does not increase with further increases of illuminance (the Weber range). This paper aims at determining the compatibility of the results of these two lines of research. We consider empirical constraints from data bearing on the shape of the surface describing contrast sensitivity to sine-wave gratings as a function of spatial frequency and illuminance simultaneously, in order to determine whether they are consistent with a summary description in terms of DeVries-Rose and Weber's laws. Our analysis indicates that, with sine-wave gratings, the DeVries-Rose law can only hold empirically at low spatial frequencies.

Con frecuencia se ha medido la función visual a distintos niveles de iluminancia, bien determinando la agudeza visual para enrejados sinusoidales en función del nivel luminoso o bien determinando la forma en que la sensibilidad a enrejados sinusoidales cambia con la iluminancia. La primera vía de acercamiento ha revelado que la agudeza varía con la iluminancia de acuerdo con una función de dos ramas y un punto de discontinuidad en la transicion de visión escotópica a visión fotópica. Los resultados obtenidos a través de la segunda vía se han resumido aludiendo a una transición de la ley de DeVries-Rose a la de Weber, según la cual el logaritmo de la sensibilidad aumenta linealmente con pendiente 0.5 a medida que aumenta la iluminancia (para niveles bajos de iluminancia que comprenden el llamado rango de DeVries-Rose) pero luego permanece constante e invariante ante sucesivos incrementos de iluminancia (dentro del llamado rango de Weber). Aquí se evalúa la compatibilidad de los resultados obtenidos en estas dos líneas de investigación. Se parte de las restricciones empíricas impuestas por datos que revelan la forma de la superficie de sensibilidad a enrejados sinusoidales en función de la frecuencia espacial y la iluminancia, y se determina si esas restricciones son compatibles con la descripción que ofrecen las leyes de DeVries–Rose y Weber. El análisis muestra que la ley de DeVries-Rose sólo es posible empíricamente para enrejados sinusoidales de baja frecuencia.

Type
Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, M., & Stiles, W.S. (1954). Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta, 1, 5965.CrossRefGoogle Scholar
Barlow, H.B. (1957). Increment thresholds at low intensities considered as signal noise discriminations. Journal of Physiology, 136, 469488.CrossRefGoogle ScholarPubMed
Brown, L.G., & Rudd, M.E. (1998). Evidence for a noise gain control mechanism in human vision. Vision Research, 38, 19251933.CrossRefGoogle ScholarPubMed
Cavonius, C.R., & Robbins, D.O. (1973). Relationships between luminance and visual acuity in the rhesus monkey. Journal of Physiology, 232, 239246.CrossRefGoogle ScholarPubMed
Daly, S. (1993). The visible differences predictor: An algorithm for the assessment of image fidelity. In Watson, A.B. (Ed.), Digital images and human vision (pp. 179206). Cambridge, MA: MIT Press.Google Scholar
DeValois, R.L., Morgan, H., & Snodderly, D.M. (1974). Psychophysical studies of monkey vision-III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Research, 14, 7581.CrossRefGoogle Scholar
DeVries, H. (1943). The quantum character of light and its bearing upon the threshold of vision, the differential sensitivity and the visual acuity of the eye. Physica, 10, 553564.CrossRefGoogle Scholar
García-Pérez, M.A., & Peli, E. (1997). The transition from DeVries-Rose to Weber's laws: Comments on Rovamo, Mustonen and Näsänen (1995). Vision Research, 37, 25732576.CrossRefGoogle ScholarPubMed
García-Pérez, M.A., & Peli, E. (1999). Lack of covariation of the effects of luminance and eccentricity on contrast sensitivity. Optometry and Vision Science, 76, 15.Google ScholarPubMed
Graham, N.V.S. (1989). Visual pattern analyzers. New York: Oxford University Press.CrossRefGoogle Scholar
Hendley, C.D. (1948). The relation between visual acuity and brightness discrimination. Journal of General Physiology, 31, 433457.CrossRefGoogle ScholarPubMed
Hess, R.F. (1990). The Edridge-Green Lecture. Vision at low light levels: Role of spatial, temporal and contrast filters. Ophthalmic and Physiological Optics, 10, 351359.CrossRefGoogle ScholarPubMed
Hess, R.F., & Nordby, K. (1986a). Spatial and temporal limits of vision in the achromat. Journal of Physiology, 371, 365385.CrossRefGoogle ScholarPubMed
Hess, R.F., & Nordby, K. (1986b). Spatial and temporal properties of human rod vision in the achromat. Journal of Physiology, 371, 387406.CrossRefGoogle ScholarPubMed
Hetch, S., & Mintz, E.U. (1939). The visibility of single lines at various illuminations and the retinal basis of visual resolution. Journal of General Physiology, 22, 593611.Google Scholar
Kelly, D.H. (1972). Adaptation effects on spatio-temporal sine-wave thresholds. Vision Research, 12, 89101.CrossRefGoogle ScholarPubMed
Kelly, D.H. (1975). Spatial frequency selectivity in the retina. Vision Research, 15, 665672.CrossRefGoogle ScholarPubMed
Mustonen, J., Rovamo, J., & Näsänen, R. (1993). The effects of grating area and spatial frequency on contrast sensitivity as a function of light level. Vision Research, 33, 20652072.CrossRefGoogle ScholarPubMed
Patel, A.S. (1966). Spatial resolution by the human visual system. The effect of mean retinal illuminance. Journal of the Optical Society of America, 56, 689694.CrossRefGoogle ScholarPubMed
Rose, A. (1948). The sensitivity performance of the human eye on an absolute scale. Journal of the Optical Society of America, 38, 196208.CrossRefGoogle Scholar
Rovamo, J., Mustonen, J., & Näsänen, R. (1994). Modelling contrast sensitivity as a function of retinal illuminance and grating area. Vision Research, 34, 13011314.CrossRefGoogle ScholarPubMed
Rovamo, J., Näsänen, R., & Mustonen, J. (1997). Transition from DeVries-Rose to Weber's law: Reply to García-Pérez and Peli (1997). Vision Research, 37, 25762578.CrossRefGoogle Scholar
Rudd, M.E. (1996). A neural timing model of visual threshold. Journal of Mathematical Psychology, 40, 129.CrossRefGoogle Scholar
Rudd, M.E., & Brown, L.G. (1996). A model of Weber and noise gain control in the retina of the toad Bufo marinus. Vision Research, 37, 24332453.CrossRefGoogle Scholar
Rudd, M.E., & Brown, L.G. (1997). Stochastic retinal mechanisms of light adaptation and gain control. Spatial Vision, 10, 125148.Google Scholar
Shapley, R., & Enroth-Cugell, C. (1984). Visual adaptation and retinal gain controls. Progress in Retinal Research, 3, 263346.CrossRefGoogle Scholar
Shlaer, S. (1937). The relation between visual acuity and illumination. Journal of General Physiology, 21, 165188.CrossRefGoogle ScholarPubMed
Shlaer, S., Smith, E.L., & Chase, A.M. (1942). Visual acuity and illumination in different spectral regions. Journal of General Physiology, 25, 553569.CrossRefGoogle ScholarPubMed
van de Grind, W.A., Koenderink, J.J., & van Doorn, A.J. (2000). Motion detection from photopic to low scotopic luminance levels. Vision Research, 40, 187199.CrossRefGoogle ScholarPubMed
van Meeteren, A., & Vos, J.J. (1972). Resolution and contrast sensitivity at low luminances. Vision Research, 12, 825833.CrossRefGoogle ScholarPubMed