Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T13:22:05.977Z Has data issue: false hasContentIssue false

Integrative Neuropsychological Characteristics of Subcortical-Frontal Brain Regions as a Schizophrenia Liability Factor

Published online by Cambridge University Press:  10 April 2014

Vera A. Orlova*
Affiliation:
Mental Health Research Centre, Russian Academy of Medical Science, Moscow
Nina I. Voskresenskaya
Affiliation:
Mental Health Research Centre, Russian Academy of Medical Science, Moscow
Nina P. Shcherbakova
Affiliation:
Mental Health Research Centre, Russian Academy of Medical Science, Moscow
Natalia K. Korsakova
Affiliation:
Mental Health Research Centre, Russian Academy of Medical Science, Moscow
Tatiana D. Savina
Affiliation:
Mental Health Research Centre, Russian Academy of Medical Science, Moscow
Elena P. Solenova
Affiliation:
Mental Health Research Centre, Russian Academy of Medical Science, Moscow
Natalia N. Efanova
Affiliation:
Mental Health Research Centre, Russian Academy of Medical Science, Moscow
Julia V. Malova
Affiliation:
Mental Health Research Centre, Russian Academy of Medical Science, Moscow
*
Correspondence concerning this article should be addressed to V.A. Orlova: Mental Health Research Centre, Russian Academy of Medical Sciences (RAMS), Zagorodnoe shosse 2, 113152 Moscow, Russia. FAX: (495)114-49-25. E-mail: [email protected]

Abstract

In order to study neuropsychological characteristics of subcortical-frontal brain regions function and assessment of their relation with vulnerability to schizophrenia 59 patients and 23 controls were investigated using Luria's neuropsychological methods. The analysis established bilateral abnormalities of the function of prefrontal and profound frontal lobe zones in patients as compared with controls. These abnormalities were more predominate in the left hemisphere. Point biserial correlation coefficients of determined integrative neuropsychological indicators with liability to schizophrenia were 0.39 ± 0.11 and 0.28 ± 0.09, for the left and right brain zones respectively. The obtained data permits discussion of the integrative neuropsychological indicators of subcortical-frontal brain regions as potential markers of liability to schizophrenia and confirms the role of structural and functional brain asymmetry in the pathogenesis of schizophrenia.

Para estudiar las características de las regiones cerebrales subcórtico-frontal, se investigaron la función y la evaluación de su relación con la vulnerabilidad a la esquizofrenia en 59 pacientes y 23 controles, empleando los métodos neuropsicológicos de Luria. El análisis estableció anormalidades bilaterales de la función de las zonas lobulares prefrontal y frontal profunda en pacientes comparados con los controles. Estas anormalidades eran más predominantes en el hemisferio izquierdo. Las coeficientes de correlación punto-biserial de algunos indicadores neuropsicológicos integrativos con la vulnerabilidad a la esquizofrenia eran de 0,39 ± 0,11 y 0,28 ± 0,09, respectivamente. Los datos obtenidos llevan a la discusión de los indicadores neuropsicológicos integrativos de regiones subcortical-frontales del cerebro que se revelan como marcadores potenciales de vulnerabilidad a la esquizofrenia y confirma el papel de la asimetría estructural y funcional del cerebro en la patogénesis de la esquizofrenia.

Type
Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cornblat, B., & Keilp, J.G. (1994). Impaired attention, genetics, and pathophysiology of schizophrenia. Schizophrenia Bulletin, 20, 3146.CrossRefGoogle Scholar
Crow, T., Ball, J., Bloom, S.R., Brown, R., Bruton, C.J., Colter, N., Frith, C.D., Johnstone, E.C., Owens, D.G., & Roberts, G.W. (1989). Schizophrenia as an anomaly of development of cerebral asymmetry. Archives of General Psychiatry, 46, 11451150.CrossRefGoogle ScholarPubMed
Deicken, R.F., Merrin, E.L., Floyd, T.C., & Weiner, M.W. (1995). Correlation between left frontal phospholipids and Wisconsin Card Sort Test performance in schizophrenia. Schizophrenia Research, 14, 177181.CrossRefGoogle ScholarPubMed
DeLisi, L.E., Sakuma, M., Kushner, M., Finer, D.L., Huff, A.L., & Crow, T.J. (1997). Anomalous cerebral asymmetry and language processing in schizophrenia. Schizophrenia Bulletin, 23, 255271.CrossRefGoogle ScholarPubMed
Early, T.S., Reiman, E.M., Raichle, M.E., & Spitznage, l E.L. (1989). Left globus pallidus abnormality in never-medicated patients with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 84, 561563.CrossRefGoogle Scholar
Efanova, N.N., Orlova, V.A., Voskresenskaya, N.I., Gubsky, L.V., Kuprianov, D.A., Anisimov, N.V., Fedorova, E.A., Seiku, Yu.A., & Solokhina, T.A. (2005). MRT-parametry podkorkovykh i lobnykh struktur mozga kak markery podverzhennosti schizophrenii. (Magnetic resonance tomography parameters of subcortical and frontal brain structures as markers of liability to schizophrenia). Rossiyski psikhiatricheski zhurnal, 5, 1215.Google Scholar
Falconer, D.S. (1960). Introduction to quantitative genetics. Edinburgh, UK: Oliver & Boyd.Google Scholar
Faraone, S.V., Seidman, L.J., Kremen, W.S., Toomey, R., Pepple, J.R., & Tsuang, M.T. (1999). Neuropsychological functioning among the nonpsychotic relatives of schizophrenic patients: A 4-year follow-up study. Journal of Abnormal Psychology, 108, 176181.CrossRefGoogle ScholarPubMed
Grant, D.A., & Berg, E.A. (1948). A behavioural analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology, 38, 401411.CrossRefGoogle Scholar
Gur, R.E., & Pearlson, G.D. (1993). Neuroimaging in schizophrenia research. Schizophrenia Bulletin, 19, 337.CrossRefGoogle ScholarPubMed
Highley, J.R., Esiri, M.M., Cortina-Borja, M., McDonald, B., Cooper, S., Herron, B., & Crow, T.J. (1998). Anomalies of cerebral asymmetry in schizophrenia interact with gender and age of onset: A post-mortem study. Schizophrenia Research, 34, 1325.CrossRefGoogle ScholarPubMed
Ingvar, D.H. (1987). Evidence for frontal/prefrontal cortical dysfunction in chronic schizophrenia: The phenomenon of “hypofrontality” reconsidered. In Helmchen, H. & Henn, F.A. (Eds.), Biological perspectives of schizophrenia (pp. 201211). New York: Wiley.Google Scholar
Khomskaya, D. (1972). Mozg i aktivatsia (Brain and activation). Moscow: Moscow State University.Google Scholar
Koren, D., Seidman, L.J., Harrison, R.H., & Lyon, M. (1998). Factor structure of the Wisconsin Card Sorting Test: Dimensions of deficit in schizophrenia. Neuropsychology, 12, 289302.CrossRefGoogle ScholarPubMed
Luria, A.R. (1963). Mozg cheloveka i psikhicheskie processy (Human brain and psychological processes). Moscow: Moscow State University.Google Scholar
Luria, R. (1966). Lobnye doli i reguliacia povedenia. In comp. Lobnye doli i reguliacia psikhicheskikh protsessov (The frontal lobe and the regulation of psychological processes). Moscow: Moscow State UniversityGoogle Scholar
McDonald, C., Bullmore, E.T., Sham, P.C., Chitnis, X., Wickham, H., Bramon, E., & Murray, R.M. (2004). Assosiation of genetic risks for schizophrenia and bipolar disorder with specific and generic brain structural endophenotypes. Archives of General Psychiatry, 61, 974984.CrossRefGoogle Scholar
Orlova, V., Savina, T., Korsakova, N., Schherbakova, N., Demikova, N., _iloserdov, E., Gubsky, L., Smirnov, P., Kupriyanov, D., Anisimov, N., Savvateeva, N., & Demikova, N. (2004). Morphological peculiarities and functional connections of corpus callosum in families of schizophrenics. Neurology Psychiatry and Brain Research., 11, 8390.Google Scholar
Orlova, V.A., Savina, T.D., Trubnikov, V.I., Savvateeva, N.J., Odintsova, S.A., Shcherbakova, N.P., & Kozlova, I.A. (1998). Strukturnye osobennosti mozga (po dannym magnitno-rezonansnoi tomografii) i ikh funkcionalnye sviazi v semiakh bolnykh shizofreniei. (Special structural features of the brain [according to magnetic resonance tomography] and their functional links in families with schizophrenic patients). Rossiyski psikhiatricheski zhurnal, 6, 4856Google Scholar
Orlova, V.A., Shcherbakova, N.P., Korsakova, N.K., Savina, T.D., Ermakov, I.L., & Sudakov, S.A. (2004a). Kharakteristiki levykh podkorkovo-lobnykh, podkorkovo-visochnykh i podkorkovykh zon golovnogo mozga kak mnogomernye neiropsikhologicheskie faktory geneticheskogo riska shizofrenii. (Charactersitics of the left subcortical frontal, subcortical temporal, and subcortical areas of the human brain as multidimensional neuro-psychological factors of genetic risk of shizophrenia). In Bogolepova, N.N. & Fokina, V.F. (Eds.), Funktsionalnaia mezhpolusharnaia assimetria (Functional interhemispheric asymmetry) (pp. 610617). Moscow: Nauchnyi mir.Google Scholar
Orlova, V.A., Shcherbakova, N.P., Korsakova, N.K., Savina, T.D., Ermakov, I.L., & Sudakov, S.A. (2004b). Kharakteristiki korkovo-podkorkovykh zon golovnogo mozga kak mnogomernye neiropsikhologicheskie faktory geneticheskogo riska shizofrenii (Neuropsychological characteristics of cortical and subcortical zones of the human brain as multidimensional genetic risk factors of schizophrenia). Fiziologia cheloveka, 30, 2026. (Translated in 2004: Human Physiology, 30, 268- 273).Google ScholarPubMed
Orlova, V.A., Trubnikov, V.I., Odintsova, S.A., Savvateeva, N.J., Kozlova, I.A., & Savina, T.D. (1999). Geneticheskijanaliz anatomo-morfologicheskikh priznakov golovnogo mozga, vyjavliaemykh s pomoshchiu magnitno-rezonansnogo issledovaniia v semiakh bolnykh shizofreniei. Genetika, 35, 9981004. (Translated in 1999 by The Russian Journal of Genetics, 35, 857–862.)Google Scholar
Orlova, V.A., Trubnikov, V.I., Savvateeva, N.Y., & Lebedeva, I.S. (2000). Abnormalities of ventricle asymmetry (by MRI data) and their determination in the families of schizophrenic patients. American Journal of Medical Genetics, 96, 516.Google Scholar
Orlova, V.A., Vavilov, S.B., Trubnikov, V.I., & Belova, O.G. (1994). Geneticheski analiz kompiuterno-tomograficheskikh priznakov pri shizofrenii. (Genetic analysis of computer-tomographic features in schizophrenia). Zhurnal nevropatologii I psikhiatrii, 2, 8590.Google Scholar
Pearlson, G.D., & Marsh, L. (1999). Structural brain imaging in schizophrenia: A selective review. Biological Psychiatry, 46, 627649.CrossRefGoogle ScholarPubMed
Savina, T.D., & Orlova, V.A. (2003). Geneticheskaia determinacia priznakov psikhicheskoi aktivnosti v semiakh bolnykh shizofreniei.. Genetika, 39, 93102. (Translated in 2003 by The Russian Journal of Genetics, 31, 77–86.).Google Scholar
Savina, T.D., Orlova, V.A., Trubnikov, V.I., Savvateeva, N.Y., Odinsova, S.A., & Schherbakova, N.P. (1998). Correlations between multi-level characteristics of schizophrenia pathogenesis in families. European Neuropsychopharmacology, 8 (Suppl. 2), 306.CrossRefGoogle Scholar
Sigmundsson, T., Suckling, J., Maier, M., William, S., Bullmore, E., Greenwood, K., Fukuda, R., Ron, M., & Toone, B. (2001). Structural abnormalities in frontal, temporal and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. American Journal of Psychiatry, 158, 234243.CrossRefGoogle ScholarPubMed
Sokal, R.R., & Rohlf, F.J. (1981). Biometry (2nd ed.). New York: W.H. Freeman.Google Scholar
Sweeney, J.A., Haas, G.L., & Li, S.H. (1992). Neuropsychological and eye movement abnormalities in first-episode and chronic schizophrenia. Schizophrenia Bulletin, 18, 283293.CrossRefGoogle ScholarPubMed
Tiganov, A.S. (1999). Shizophrenia. In Tiganov, A.S. (Ed.), Rukovodstvo po psihiatrii (Manual of Psychiatry) (pp. 407554). Moscow: Meditsina.Google Scholar
Tkachenko, S.V., & Bocharov, A.V. (1991). Neiropsihologicheski analiz defekta pri shizofrenii i affektivnykh psihozakh. Shizofrenicheskij defekt. Diagnostika, patogenez, lechenie (Schizophrenic defect: Diagnosis, pathogenesis, treatment) (pp. 95123). Saint-Petersburg, Russia: Psihonevrologicheskogo Instituta im. V.M. Behtereva.Google Scholar
Toulopoulou, T., Morris, R.G., Rabe-Hesketh, S., & Murray, R.M. (2003). Selectivity of verbal memory deficit in schizophrenic patients and their relatives. American Journal of Medical Genetics, 11, 17.Google Scholar
Vovin, _.Ya., Golenkov, _.V., & Ivanov, _.V. (1991). Organicheskaia nedostatochnost golovnogo mozga pri shizofrenii. In Vovin, R. Ya. (Ed.), Shizofrenicheskij defekt. Diagnostika, patogenez, lechenie (Schizophrenic defect: Diagnosis, pathogenesis, treatment) (pp. 629). Saint-Petersburg: Psihonevrologicheskogo Instituta im. V.M. Behtereva.Google Scholar
Weinberger, D.R., Berman, K.F., & Illowsky, B.P. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry, 45, 609615.CrossRefGoogle ScholarPubMed
World Health Organization. (1990). International classification of diseases (10th ed.).Geneva. World Health Organization.Google Scholar