Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T19:35:12.292Z Has data issue: false hasContentIssue false

Executive Attention and Personality Variables in Patients with Frontal Lobe Damage

Published online by Cambridge University Press:  10 January 2013

María Rodríguez-Bailón*
Affiliation:
Universidad de Granada (Spain)
Mónica Triviño
Affiliation:
Universidad de Granada (Spain)
Juan Lupiáñez
Affiliation:
Universidad de Granada (Spain)
*
Correspondence concerning this article should be addressed to María Rodríguez Bailón. Departamento de Psicología Experimental y Fisiología del Comportamiento. Universidad de Granada. Facultad de Psicología. Campus Universitario de Cartuja s/n, 18071 Granada (Spain). Phone: +34-958240667. Fax: +34-958246239. E-mail: [email protected]

Abstract

Executive Control is required to deal with novel situations or when an action plan is needed. This study aimed to highlight the executive attention deficits of patients with frontal lobe damage. To do so, the ANT-I task (Attention Network Test-Interactions) was administered for the first time to a group of 9 patients with frontal damage caused by traumatic brain injury (TBI) and a matched control group. This task made it possible to measure the three attentional networks proposed by Posner and Dehaene (1994) and their interactions. Results on the alerting and orienting networks did not show any significant differences between the groups. However, a significant effect of group on the executive control network was observed. In addition, participants' personality was assessed with a clinical inventory (the Millon Personality Inventory) that showed a significant positive correlation between borderline personality disorder and the conflict index. These results suggest that frontal lobe damage causes an exclusive impairment in the conflict resolution network that is related to personality traits characterized by a lack of behavioral control. More research will be necessary to study this causal relationship.

El sistema de control ejecutivo es requerido para resolver situaciones novedosas o que requieren de una planificación para su ejecución. Este estudio tiene como objetivo poner de manifiesto el déficit atencional ejecutivo específico que se presenta en pacientes con lesión cerebral frontal. Para ello, se administró la tarea ANT-I (Attention Network Test-Interactions), que mide las tres redes atencionales propuestas por Posner y Dehaene (1994) y las interacciones entre ellas, por primera vez, a un grupo de 9 pacientes con daño frontal tras traumatismo craneoencefálico (TCE) y a un grupo control emparejado. Los resultados mostraron que no hay diferencias significativas entre ambos grupos en las redes de alerta y de orientación. Sin embargo, sí se encontró un efecto significativo de grupo en la red de control ejecutivo. Añadido a este resultado, se analizó la personalidad de los pacientes y se observó que el trastorno de personalidad límite correlacionaba positivamente con el índice de control ejecutivo. Estos datos sugieren que el daño en la corteza prefrontal produce una alteración exclusiva en la resolución de conflicto y que esto se relaciona con variables de personalidad caracterizadas por una ausencia de control conductual. No obstante, se requiere más investigación para estudiar esta relación causal.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M. P., Stuss, D. T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68, 15151523. http://dx.doi.org/10.1212/01.wnl.0000261482.99569.fbCrossRefGoogle ScholarPubMed
Amado, I., Lupianez, J., Chirio, M., Landgraf, S., Willard, D., Olié, J., & Krebs, M. (2012). Modulation of cognitive control by alertness in schizophrenia. Manuscript submitted for publication.Google Scholar
American Psychiatric Association (2003). DSM-IV TR: Brevario: Criterios Diagnósticos [DSM-IV TR: Breviary: Diagnostic criteria]. Barcelona, Spain: MassonGoogle Scholar
Baddeley, A. D. (1986). Working memory. Oxford, England: Clarendon Press.Google ScholarPubMed
Blair, R. J. R. (2004). The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain and Cognition, 55, 198208. http://dx.doi.org/10.1016/S0278-2626(03)00276-8CrossRefGoogle ScholarPubMed
Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8, 539546. http://dx.doi.org/10.1016/j.tics.2004.10.003CrossRefGoogle ScholarPubMed
Burgess, P. W., & Shallice, T. (1996). Response suppression, initiation and strategy use following frontal lobe lesions. Neuropsychologia, 34, 263272. http://dx.doi.org/10.1016/0028-3932(95)00104-2CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4, 215222. http://dx.doi.org/10.1016/S1364-6613(00)01483-2CrossRefGoogle ScholarPubMed
Callejas, A., Lupianez, J., Funes, M. J., & Tudela, P. (2005). Modulations among the alerting, orienting and executive control networks. Experimental Brain Research, 167, 2737. http://dx.doi.org/10.1007/s00221-005-2365-zCrossRefGoogle ScholarPubMed
Callejas, A., Lupianez, J., & Tudela, P. (2004). The three attentional networks: On their independence and interactions. Brain and Cognition, 54, 225227. http://dx.doi.org/10.1016/j.bandc.2004.02.012CrossRefGoogle ScholarPubMed
Chica, A. B., Thiebaut de Schotten, M., Toba, M., Malhotra, P., Lupianez, J., & Bartolomeo, P. (2012). Attention networks and their interactions after right-hemisphere damage. Cortex, 48, 654663. http://dx.doi.org/10.1016/j.cortex.2011.01.009CrossRefGoogle ScholarPubMed
dos Santos-Assef, E. C., Seabra-Capovilla, A. G., & Capovilla, F. C.(2007). Computerized Stroop Test to assess selective attention in children with attention deficit hyperactivity disorder. The Spanish Journal of Psychology, 10, 3340.CrossRefGoogle Scholar
Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23, 475483. http://dx.doi.org/10.1016/S0166-2236(00)01633-7CrossRefGoogle ScholarPubMed
Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M., & Posner, M. I. (2003). Cognitive and brain consequences of conflict. Neuroimage, 18, 4257. http://dx.doi.org/10.1006/nimg.2002.1319CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14, 340347. http://dx.doi.org/10.1162/089892902317361886CrossRefGoogle ScholarPubMed
Fu, C. H. Y, Walsh, N. D., Kim, J., Brammer, M. J., Bullmore, E. T., & Cleare, A. J. (2001). Mapping the trail(s): Neural correlates of visuomotor tracking and sequencing. Neuroimage, 13, 402. http://dx.doi.org/10.1016/S1053-8119(01)91745-8CrossRefGoogle Scholar
Funes, M. J., Bailon, M. R., Perez, R. R., & Lupianez, J. (2009). Solving three spatial conflict types at a time: Evidence for multiple conflict control mechanisms. Cognitive Processing, 10, 153.Google Scholar
Harrison, B. J., Shaw, M., Yucel, M., Purcell, R., Brewer, W. J., Strother, S. C., … Pantelis, C. (2005) Functional connectivity during Stroop task performance. Neuroimage, 24, 181191. http://dx.doi.org/10.1016/j.neuroimage.2004.08.033CrossRefGoogle ScholarPubMed
Hooker, C. I., & Knight, R. T. (2008). The role of lateral orbitofrontal cortex in the inhibitory control of emotion. In Zald, D., & Rauch, S. (Eds.), The orbitofrontal cortex. Oxford, England: Oxford University Press.Google Scholar
Lin, F., Weng, S., Xie, B., Wu, G., & Lei, H. (2011). Abnormal frontal cortex white matter connections in bipolar disorder: A DTI tractography study. Journal of Affective Disorders, 131, 299306. http://dx.doi.org/10.1016/j.jad.2010.12.018CrossRefGoogle ScholarPubMed
Millon, T. (1987). MCMI-II. Inventario Multiaxial Clínico de Millon [Millon Clinical Multiaxial Inventory]. Madrid, Spain: TEAGoogle Scholar
Mitchell, R. L. (2005) The BOLD response during Stroop tasklike inhibition paradigms: Effects of task diffculty and taskrelevant modality. Brain Cognition, 59, 2337. http://dx.doi.org/10.1016/j.bandc.2005.04.001CrossRefGoogle Scholar
Miró, E., Lupiáñez, J., Hita, E., Martínez, M., Sánchez, A., & Buela-Casal, G. (2011). Attentional deficits in fibromyalgia and its relationships with pain, emotional distress and sleep dysfunction complaints. Psychology and Health, 26, 765780. http://dx.doi.org/10.1080/08870446.2010.493611CrossRefGoogle ScholarPubMed
Mullane, J., Corkum, P., Klein, R., McLaughlin, E., & Lawrence, M. (2011) Alerting, orienting, and executive attention in children with ADHD. Journal of Attention Disorders, 15, 310320. http://dx.doi.org/10.1177/1087054710366384CrossRefGoogle ScholarPubMed
New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Mitelman, S. A., Newmark, R., … Siever, L. J. (2007). Amygdala-prefrontal disconnection in borderline personality disorder. Neuropharmachology, 32, 16291640. http://dx.doi.org/10.1038/sj.npp.1301283CrossRefGoogle ScholarPubMed
Norman, D. A., & Shallice, T. (1983). Atention to action-willed and automatic-control of behavior. Bulletin of the Psychonomic Society, 21, 354–354.Google Scholar
Pacheco-Unguetti, A. P., Acosta, A., Callejas, A., & Lupianez, J. (2010). Attention and anxiety: Different attentional functioning under state and trait anxiety. Psychological Science, 21, 298304. http://dx.doi.org/10.1177/0956797609359624CrossRefGoogle ScholarPubMed
Picton, T. W., Stuss, D. T., Alexander, M. P., Shallice, T., Binns, M. A., & Gillingham, S. (2007). Effects of focal frontal lesions on response inhibition. Cerebral Cortex, 17, 826838. http://dx.doi.org/10.1093/cercor/bhk031CrossRefGoogle ScholarPubMed
Pizzi, A. M., Chapin, J. S., Tesar, G. E., & Busch, R. M. (2009) Comparison of personality traits in patients with frontal and temporal lobe epilepsies. Epilepsy & Behavior, 15, 225229. http://dx.doi.org/10.1016/j.yebeh.2009.03.028CrossRefGoogle ScholarPubMed
Posner, M. I., & Dehaene, S. (1994). Attentional Networks. Trends in Neurosciences, 17, 7579. http://dx.doi.org/10.1016/0166-2236(94)90078-7CrossRefGoogle ScholarPubMed
Posner, M. I., & Petersen, S. E. (1990). The attention system of human brain. Annual Review of Neuroscience, 13, 2542. http://dx.doi.org/10.1146/annurev.neuro.13.1.25CrossRefGoogle ScholarPubMed
Posner, M. I., & Rothbart, M. (1992). Attentional mechanisms and conscious experience. In Rugg, D. M. M. (Ed.), The neuropsychology of consciousness (pp. 91111). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Posner, M. I., Rothbart, M. K., Sheese, B. E., & Tang, Y. (2007). The anterior cingulate gyrus and the mechanism of selfregulation. Cognitive Affective & Behavioral Neuroscience, 7, 391395. http://dx.doi.org/10.3758/CABN.7.4.391CrossRefGoogle ScholarPubMed
Posner, M. I., Rothbart, M. K., Vizueta, N., Levy, K. N., Evans, D. E., Thomas, K. M., & Clarkin, J. F. (2002). Attentional mechanisms of borderline personality disorder. Proceedings of the National Academy of Sciences of the United States of America, 99, 1636616370. http://dx.doi.org/10.1073/pnas.252644699CrossRefGoogle ScholarPubMed
Schmahl, C., & Bremner, J. D. (2006). Neuroimaging in borderline personality disorder. Journal of Psychiatric Research, 40, 419427. http://dx.doi.org/10.1016/j.jpsychires.2005.08.011CrossRefGoogle ScholarPubMed
Sohlberg, M. M., & Mateer, C. A. (1989). Remediation of executive functions impairments. In Sohlberg, M. M. & Mateer, C. A. (Eds.), Introduction to cognitive rehabilitation (pp. 232263), New York, NY: Guilford Press.Google Scholar
Soloff, P. H., Meltzer, C. C., Becker, C., Greer, P. J., Kelly, T. M., & Constantine, D. (2003). Impulsivity and prefrontal hypometabolism in borderline personality disorder. Psychiatry Research: Neuroimaging, 123, 153163. http://dx.doi.org/10.1016/S0925-4927(03)00064-7CrossRefGoogle ScholarPubMed
Stuss, D. T., Floden, D., Alexander, M. P., Levine, B., & Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771786. http://dx.doi.org/10.1016/S0028-3932(01)00013-6CrossRefGoogle ScholarPubMed
Stuss, D. T., & Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology, 53, 401433. http://dx.doi.org/10.1146/annurev.psych.53.100901.135220CrossRefGoogle ScholarPubMed
Szatkowska, I., Szymanska, O., Bojarski, P., & Grabowska, A. (2007). Cognitive inhibition in patients with medial orbitofrontal damage. Experimental Brain Research, 181, 109115. http://dx.doi.org/10.1007/s00221-007-0906-3CrossRefGoogle ScholarPubMed
Tirapu-Ustárroz, J., García-Molina, A., Luna-Lario, P., Roig-Rovira, T., Pelegrín-Valero, C (2008). Modelo de funciones y control ejecutivo (I) [Models of executive control and functions (I)]. Revista de Neurología, 46, 684692.CrossRefGoogle ScholarPubMed
Trivino, M., Correa, A., Arnedo, M., & Lupianez, J. (2010). Temporal orienting deficit after prefrontal damage. Brain, 133, 11731185. http://dx.doi.org/10.1093/brain/awp346CrossRefGoogle ScholarPubMed
Wang, K., Fan, J., Dong, Y., Wang, C. Q., Lee, T. M. C., & Posner, M. I. (2005). Selective impairment of attentional networks of orienting and executive control in schizophrenia. Schizophrenia Research, 78, 235241. http://dx.doi.org/10.1016/j.schres.2005.01.019CrossRefGoogle ScholarPubMed