Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-25T05:54:54.687Z Has data issue: false hasContentIssue false

Coding of Luminance and Color Differences on Neurons in the Rabbit's Visual System

Published online by Cambridge University Press:  10 April 2014

Dmitry V. Evtikhin*
Affiliation:
Moscow State University (Russia)
Vladimir B. Polianskii
Affiliation:
Moscow State University (Russia)
Dzekshen E. Alymkulov
Affiliation:
Moscow State University (Russia)
Evgenii N. Sokolov†
Affiliation:
Moscow State University (Russia)
*
Correspondence concerning this article should be addressed to Dr. Dmitry Evtikhin, Department of higher nervous activity, Division of Biology, M.V. Lomonosov Moscow State University, Vorobiovy Gory, Moscow, Russia119991. E-mail: [email protected]

Abstract

The neuronal activity in the rabbit's visual cortex, lateral geniculate nucleus and superior colliculus was investigated in responses to 8 color stimuli changes in pairs. This activity consisted of phasic responses (50-90 and 130-300 Ms after stimuli changes) and tonic response (after 300 Ms). The phasic responses used as a basis for the matrices (8 × 8) constructed for each neuron included the average of spikes/sec in responses to all stimuli changes. All matrices were treated by factor analysis and the basic axes of sensory spaces were revealed. Sensory spaces reconstructed from neuronal spike discharges had a two-dimensional (with brightness and darkness axes) or four-dimensional (with two color and two achromatic axes) structure. Thus it allowed us to split neurons into groups measuring only brightness differences and the measuring of color and brightness differences between stimuli. The tonic component of most of the neurons in the lateral geniculate nucleus showed linear correlation with changes in intensities; therefore, these neurons could be characterized as pre-detectors for cortical selective detectors. The neuronal spaces demonstrated a coincidence with spaces revealed by other methods. This fact may reflect the general principle of vector coding (Sokolov, 2000) of sensory information in the visual system.

Se examinaron la actividad neuronal en la corteza visual, el núcleo lateral geniculado y el collículo superior del conejo en las respuestas a 8 cambios de estímulos de color en parejas. Esta actividad consistía en respuestas fásicas (50-90 y 130-300 Ms después del cambio estimular) y respuesta tónica (después de 300 Ms). Las respuestas fásicas empleadas como una base para las matrices (8 × 8) construidas para cada neurona incluían la media de picos/segundo en respuestas a todos los cambios estimulares. Todas las matrices fueron tratadas por análisis factorial y se pusieron de manifiesto los ejes básicos de espacios sensoriales. Los espacios sensoriales reconstruidos de las descargas neuronales pico tenían una estructura bi-dimensional (con ejes de brillo y oscuridad) o de cuatro dimensiones (con dos ejes de color y dos ejes acromáticos). Así, nos permitió dividir las neuronas en grupos que sólo medían las diferencias en brillo y los que medían las diferencias entre los estímulos en color y brillantez. El componente tónico de la mayoría de las neuronas en el núcleo geniculado lateral mostraron una correlación linear con los cambios en las intensidades: de ahí, estas neuronas se podrían caracterizar como pre-detectores para los detectores corticales selectivos. Los espacios neuronales mostraron una coincidencia con los espacios revelados por otros métodos. Este hecho podría reflejar el principio general de la codificación vectorial (Sokolov, 2000) de la información sensorial en el sistema visual.

Type
Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bereshpolova, Y., Stoelzel, C.K., Gusev, A.G., Bezdudnaya, T., & Swadlow, H.A. (2006). The impact of a corticotectal impulse on the awake superior colliculus. Journal of Neuroscience, 26, 22502259.CrossRefGoogle ScholarPubMed
Evtikhin, D.V., Latanov, A.V., & Sokolov, E.N. (1997). Perceptual brightness space in the carp (Cyprinus carpio L.). Neuroscience and Behavioral Physiology, 27, 1726.CrossRefGoogle ScholarPubMed
Evtikhin, D.V., Latanov, A.V., & Sokolov, E.N. (1998). Brightness perceptive space in monkeys (rhesus macaques). Neuroscience and Behavioral Physiology, 28, 285293.CrossRefGoogle ScholarPubMed
Fomin, S.V., Sokolov, E.N., & Vaitkiavichus, G.G. (1978). Iskusstvennie organi chuvstv. Problemi modelirovaniya sensornih system [The man-made sensor organs. The problems of modeling of sensory systems]. Moscow: Nauka.Google Scholar
Izmailov, Ch.A., Sokolov, E.N., & Chernorizov, A.M. (1989). Psichofiziologia cvetovogo zreniya [The psychophysiology of color vision]. Moscow: Izdatelstvo MGU.Google Scholar
Izmailov, Ch.A., & Sokolov, E.N. (1991). Spherical model of color and brightness discrimination. Psychological Science, 2, 249259.CrossRefGoogle Scholar
Jacobs, G.H. (1993). The distribution and nature of color vision among the mammals. Biological Reviews of the Cambridge Philosophical Society, 68, 413471.CrossRefGoogle ScholarPubMed
Jassik-Gerschenfeld, D. (1965). Somesthetic and visual response of superior colliculus neurons. Nature, 208, 898900.CrossRefGoogle Scholar
Latanov, A.V., Leonova, A.Yu., Evtikhin, D.V., & Sokolov, E.N. (1997). Comparative neurobiology of color vision in humans and animals. Neuroscience and Behavioral Physiology, 27, 394404.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Thompson, K.G., Liu, D., Zhou, J., & Ault, S.J. (1995). Concomitant sensitivity to orientation, direction and color of cells in layers 2, 3 and 4 of monkey striate cortex. Journal of Neuroscience, 15, 18081818.CrossRefGoogle Scholar
Marocco, R.T., & Li, R.H. (1977). Monkey superior colliculus: Properties of single cells and their afferent inputs. Journal of Neurophysiology, 40, 844860.CrossRefGoogle Scholar
May, P.J. (2005). The mammalian superior colliculus: Laminar structure and connection. Progress in Brain Research, 151, 321378.CrossRefGoogle Scholar
Nuboer, J.F.W., & Moed, P.J. (1983). Increment-threshold spectral sensitivity in the rabbit. Journal of Comparative Physiology, 151, 353358.CrossRefGoogle Scholar
Nuboer, J.F.W., Van Nuys, W.M., & Wortel, J.F. (1983). Cone systems in the rabbit retina revealed by ERG-null detection. Journal of Comparative Physiology, 151, 347352.CrossRefGoogle Scholar
Ottes, E.P., Van Gisbergen, J.A., & Eggemont, J.J. (1987). Collicular involvement in a saccadic color discrimination task. Experimental Brain Research, 66, 465478.CrossRefGoogle Scholar
Polianskii, V.B., Sokolov, E.N., Marchenko, T.Iu., Evtikhin, D.V., & Ruderman, G.L. (1998). Perceprivnoe cvetovoe prostranstvo krolika [The perceptive color space of the rabbit]. Zhurnal Vysshei Nervnoi Deiatelnosti Im I.P.Pavlova, 48, 496504.Google Scholar
Polianskii, V.B., Evtikhin, D.V., & Sokolov, E.N. (1999). Yarkostnie componenti zritelnogo vizvannogo potenciala na cvetovie stimuli u krolika [The brightness components of the visual evoked potential to color stimuli in the rabbit]. Zhurnal Vysshei Nervnoi Deiatelnosti Im I.P.Pavlova, 49, 10461051.Google Scholar
Polianskii, V.B., Evtikhin, D.V., & Sokolov, E.N. (2000). Reconstrukciya perceptivnogo prostranstva yarkosti I cveta krolika na osnove zritelnih potencialov i ih sravnenie s dannimi povedencheskih opitov [The reconstruction of the perceptual spaces of brightness and color on the basis of visual evoked potentials and their comparison with the data from behavioral trials]. Zhurnal Vysshei Nervnoi Deiatelnosti Im I.P.Pavlova, 50, 843854.Google Scholar
Polianskii, V.B., Evtikhin, D.V., & Sokolov, E.N. (2006). Computation of color and brightness differences by rabbit visual cortex neurons. Neuroscience and Behavioral Physiology, 36, 235245.CrossRefGoogle Scholar
Polianskii, V.B., Evtikhin, D.V., Sokolov, E.N., & Alymkulov, D.E. (2007). Computation of color and brightness differences by neurons in the lateral geniculate nucleus of the rabbit. Neuroscience and Behavioral Physiology, 37, 237247.CrossRefGoogle Scholar
Roelfsema, P.R. (2006). Cortical algorithms for perceptual grouping. Annual Review of Neuroscience, 29, 203227.CrossRefGoogle ScholarPubMed
Schneider, K.A., & Kastner, S. (2005). Visual responses of the human superior colliculus: A high-resolution functional magnetic resonance imaging study. Journal of Neurophysiology, 94, 24912503.CrossRefGoogle ScholarPubMed
Sokolov, E.N., & Izmailov, Ch.A. (1984). Cvetovoe zrenie [Color vision]. Moscow: Izdatelstvo MGU.Google Scholar
Sokolov, E.N. (2000). Perception and the conditioning reflex: Vector encoding. Inernational Journal of Psychophysiology, 35, 197217.CrossRefGoogle ScholarPubMed
Sokolov, E.N. (2003). Vospriyatie i uslovnii reflex: novii vzglyad. [Perception and condition reflex: new point of view] Moscow: Izdatelstvo UMK Psihologia.Google Scholar
Vartanov, A.V., Polianskii, V.B., Sokolov, E.N., & Evtikhin, D.V. (1998). Osobennosti cvetovogo perceptivnogo prostranstva protanomalov. [The characteristics of the color perceptive space in protanomals]. Zhurnal Vysshei Nervnoi Deiatelnosti Im I.P.Pavlova, 48, 788796.Google Scholar
Wyrwicz, A.M., Chen, N., Li, L., Weiss, C., & Disterhoft, J.F. (2000). fMRI of visual system activation in the conscious rabbit. Magnetic Resonance in Medicine, 44, 474478.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Zimachev, M.M., Shekhter, E.D., Sokolov, E.N., Naatanen, R., Nyman, G., & Izmailov, Ch.A. (1991). Differencirovka cvetovih signalov setchatkoi lyagushki [The differentiation of color signals by the frog retina]. Zhurnal Vysshei Nervnoi Deiatelnosti Im I.P.Pavlova, 41, 518527.Google Scholar