Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T19:25:35.907Z Has data issue: false hasContentIssue false

Inhibitory Processes, Working Memory, Phonological Awareness, Naming Speed, and Early Arithmetic Achievement

Published online by Cambridge University Press:  10 January 2013

Jose I. Navarro*
Affiliation:
Universidad de Cádiz (Spain)
Manuel Aguilar
Affiliation:
Universidad de Cádiz (Spain)
Concepcion Alcalde
Affiliation:
Universidad de Cádiz (Spain)
Gonzalo Ruiz
Affiliation:
Universidad de Cádiz (Spain)
Esperanza Marchena
Affiliation:
Universidad de Cádiz (Spain)
Inmaculada Menacho
Affiliation:
Universidad de Cádiz (Spain)
*
Correspondence concerning this article should be addressed to José Navarro. Departamento de Psicología, Universidad de Cádiz. Campus Rio San Pedro, 11510 Puerto Real – Cádiz (Spain). Phone: +34-956 016217, Fax: + 34-956 016253. E-mail: [email protected]

Abstract

This study identified the cognitive processes that underlie the individual differences in early mathematical performance in elementary school children. Taking into account the Baddeley framework multicomponent model, the inhibitory processes, working memory, phonological awareness, and naming speed are considered to be related to early math learning. To examine this relationship, we compared the performance of a total of 424 typically developing middle-class children, aged between 4 and 7 years in a battery of cognitive and early numeric tests: The Utrecht Early Numeracy Test, the Rapid Automatized Naming Test, Spanish version of the Stroop task, the Numeracy Interference Test, Digit Span test, and Phonological Knowledge Test. The mean age of the participants was 72.21 months (sd = 14.8), and 48.6% were male and 51.4% were female. The results demonstrated that children performing worst on central executive, phonological processing, and inhibitory processes showed lower results in early mathematical tasks measured by The Utrecht Early Numeracy Test. Results supported the notion that the executive system is an important predictor of children's mathematical performance.

En este trabajo se identificaron las variables que están en la base de las diferencias de rendimiento en matemáticas en los primeros años de escolarización. Teniendo en cuenta el modelo multicomponente de Baddeley, se ha considerado que los procesos inhibitorios, la memoria de trabajo, la conciencia fonológica y la velocidad de denominación están a la base del aprendizaje matemático temprano. Con el fin de examinar esta relación se ha evaluado a un total de 424 escolares de 4 a 7 años (48,6 % eran niños y 51,4 % niñas) con una batería de pruebas cognitivas y de rendimiento matemático: el test de Utrech de matemática temprana, el test de velocidad de nominación, la versión española de la tarea de Stroop, un test de memoria de dígitos y un test de conciencia fonológica. Los resultados mostraron que aquellos alumnos que obtenían peores resultados en memoria de trabajo, conciencia fonológica y procesos inhibitorios, mostraban también peores resultados en tareas matemáticas evaluadas por el test de Utrech. Estos resultados apoyan la noción de que el funcionamiento de los procesos ejecutivos puede predecir los resultados en actividades de matemáticas tempranas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsina, A., & Saiz, D. (2003). Un análisis comparativo del papel del bucle fonológico versus agenda viso-espacial en el cálculo en niños de 7-9 años [A comparative analysis of the phonological loop versus the visuo-spatial sketchpad in mental arithmetic tasks in 7-8 y.o. children]. Psicothema, 15, 241246.Google Scholar
Anderson, U. (2008). Mathematical competencies in children with different types of learning difficulties. Journal of Educational Psychology. 100, 4866. doi:10.1037/0022-0663.100.1.48CrossRefGoogle Scholar
Baddeley, A. (1997). Working memory. Oxford, UK: Clarendon Press.Google Scholar
Berg, D. (2008). Working memory and arithmetic calculation in children: The contributory roles of processing speed, short-term memory, and reading. Journal of Experimental Child Psychology, 99, 288308. doi:10.1016/j.jecp.2007.12.002CrossRefGoogle ScholarPubMed
Bull, R., Espy, K. A., & Wiebe, S. (2008). Short term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at 7 years. Developmental Neuropsychology, 33, 205228. doi:10.1080/87565640801982312CrossRefGoogle Scholar
Butterworth, B. (1999). The Mathematical Brain. London, UK: Macmillan.Google Scholar
Carlson, S., & Moses, L. (2001). Individual differences in inhibitory control and children's theory of mind. Child Development, 72, 10321053. doi:10.1111/1467-8624.00333CrossRefGoogle ScholarPubMed
DeStefano, D., & LeFevre, J. (2004). The role of working memory in mental arithmetic. European Journal of Cognitive Psychology, 16, 353386. doi:10.1080/09541440244000328CrossRefGoogle Scholar
Diamond, A., Barnett, W. S., Thomas, J., & Munro, S. (2007). Preschool program improves cognitive control. Science. 318, 13871388. doi:10.1126/science.1151148CrossRefGoogle ScholarPubMed
Durand, M., Hulme, Ch., Larkin, R., & Snowling, M. (2005). The cognitive foundations of reading and arithmetic skills in 7-10-year-olds. Journal of Experimental Child Psychology, 91, 113136. doi:10.1016/j.jecp.2005.01.003CrossRefGoogle Scholar
Fuchs, L., Fuchs, D., Compton, D., Powell, S., Seethaler, P., Capizzi, A., … & Fletcher, J. (2006). The cognitive correlates of third-grade skill in arithmetic, algorithmic computation, and arithmetic word problems. Journal of Educational Psychology. 98, 2943. doi:10.1037/0022-0663.98.1.29CrossRefGoogle Scholar
Geary, D. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 415. doi:10.1177/00222194040370010201CrossRefGoogle ScholarPubMed
Golden, J. (2005). Stroop, test de colores y palabras. [Stroop colors and words test]. Madrid, Spain: Tea.Google Scholar
Guzmán, R., Jiménez, J. E., Ortiz, M. E., Hernández-Valle., I., Estévez, A., Rodrigo, M., … & Hernández, S. (2004). Evaluación de la velocidad de nombrar en las dificultades de aprendizaje de la lectura. [Naming speed assessment in reading disabilities]. Psicothema, 16, 442444.Google Scholar
Kyttala, M., & Lehto, J. (2008). Some factors underlying mathematical performance: The role of visuospatial working memory and non-verbal intelligence. European Journal of Psychology of Education, 23, 7794. doi:10.1007/BF03173141CrossRefGoogle Scholar
Kroesbergen, E., Van de Rijt, B., & Van Luit, J. (2007). Working memory and early mathematics: Possibilities for early identification of mathematics learning Disabilities. Advances in Learning and Behavioral Disabilities, 20, 119.CrossRefGoogle Scholar
Lefevre, J., Destefano, D., Coleman, B., & Shanahan, T. (2005). Mathematical cognition and working memory. In Campbell, J. (Ed.) Handbook of Mathematical Cognition, (pp. 361377). New York, NY: Psychology Press.Google Scholar
Lehto, J., Juujarvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 5980. doi:10.1348/026151003321164627CrossRefGoogle Scholar
Navarro, J., Aguilar, M., Alcalde, C., Marchena, E., Ruiz, G., Menacho, I., & Sedeno, M. (2011). Test de evaluacion matematica temprana (TEMT). [The Utrecht Early Numeracy Test (UENT) Spanish version]. Madrid, Spain: EOS.Google Scholar
Orrantia, J. (2005). Diferencias individuales en aritmética cognitiva. Influencia de los procesos de recuperación de hechos numéricos [Individual differences in cognitive arithmetic. Influence of fact retrieval in solving multidigit arithmetic problems], Cognitiva, 17, 7184. doi:10.1174/0214355053114754CrossRefGoogle Scholar
Passolunghi, M., Vercelloni, B., & Schadee, H. (2007). The precursors of mathematics learning: Working memory, phonological ability and numerical competence. Cognitive Development, 22, 165184. doi:10.1016/j.cogdev.2006.09.001CrossRefGoogle Scholar
Passolunghi, M., Mammarella, I., & Altoè, G. (2008). Cognitive abilities as precursors of the early acquisition of mathematical skills during first through second grades. Developmental Neuropsychology, 33, 229250. doi:10.1080/87565640801982320CrossRefGoogle ScholarPubMed
Pickering, S. J., Baques, J., & Gathercole, S. E. (1999): Batería de Tests de Memoria de Treball. [Working Memory tests]. Barcelona, Spain: Laboratorio de memoria de la Universidad Autónoma de Barcelona.Google Scholar
Ramos, J., & Cuadrado, I. (2006). PECO. Prueba para la evaluación del conocimiento fonológico. [The Phonological Knowledge Test]. Madrid, Spain: EOS.Google Scholar
Resing, W., Ruijssenaars, A., & Bosma, T. (2002). Dynamic assessment: Using measures for learning potential in the diagnostic process. In Aalsvoort, G. Van der, Resing, W., & Ruijssenaars, A. (Eds.), Advances in cognition and educational practice, (pp. 2964). New York, NY: Elsevier.Google Scholar
Solsona, J., Navarro, J., & Aguilar, M. (2006). Efectos de la aplicación de un programa de conocimiento matemático en educación infantil. [Effect of a learning mathematical training program for kindergarten]. Revista de Educacion, 341, 131142.Google Scholar
Swanson, H. L. (2008). Working memory and intelligence in children: What develops? Journal of Educational Psychology. 100, 581602. doi:10.1037/0022-0663.100.3.581CrossRefGoogle Scholar
Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not a risk for serious math difficulties. Journal of Educational Psychology, 96, 471491. doi:10.1037/0022-0663.96.3.471CrossRefGoogle Scholar
Swanson, H. L., Jerman, O., & Zheng, X. (2008). Growth in working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 100, 343379. doi:10.1037/0022-0663.100.2.343CrossRefGoogle Scholar
Van de Rijt, B., Van Luit, J., & Pennings, A. (1999). The construction of the Utrecht early mathematical competence scale. Educational and Psychological Measurement, 59, 289309. doi:10.1177/00131649921969857CrossRefGoogle Scholar
Van der Sluis, S., de Jong, P. F., & Van der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427449. doi:10.1016/j.intell.2006.09.001CrossRefGoogle Scholar
Wechsler, D. (2005). WISC-IV, Escala de inteligencia de Wechsler para niños-IV. Spanish version. [Wechsler Intelligence Scale for Children–Fourth Edition] Madrid, Spain: Tea.Google Scholar
Wise, J., Pae, H., Wolfe, C., Sevcik, R., Morris, R., Lovett, M., & Wolf, M. (2008). Phonological awareness and rapid naming skills of children with reading disabilities and children with reading disabilities who are at risk for mathematics difficulties. Learning Disabilities Research & Practice. 23, 125136. doi:10.1111/j.1540-5826.2008.00270.xCrossRefGoogle ScholarPubMed
Wolf, M., & Denckla, M. (2003). Rapid Automatized Naming Tests. Greenville, SC: Super Duper.Google Scholar