Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T08:09:33.108Z Has data issue: false hasContentIssue false

Electroencephalographic Intercentral Interaction as a Reflection of Normal and Pathological Human Brain Activity

Published online by Cambridge University Press:  10 April 2014

Galina N. Boldyreva*
Affiliation:
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow
Ludmila A. Zhavoronkova
Affiliation:
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow
Elena V. Sharova
Affiliation:
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow
Irina S. Dobronravova
Affiliation:
Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow
*
Correspondence concerning this article should be sent to Galina N. Boldyreva, Moscow, 117475, ul. Butlerova. 5a. E-mail: [email protected]

Abstract

The authors summarized EEG findings and defined the nature of the intercentral EEG relationships in different functional states in healthy subjects and patients with organic cerebral pathology, based on a coherence analysis. Similar EEG characteristics in healthy individuals were identified: an anterior-posterior gradient of average coherence levels, the type of cortical-subcortical relationships in anterior cerebral structures. Right- and left-handed individuals showed frequent and regional differences in EEG coherence, which mainly reflected specificity of intracortical relationships. Development and regression of pathology in right-and left-handed individuals with organic brain lesions were thought to be caused by these differences. Lesions of regulatory structures (diencephalic, brain stem and limbic structures) provoked a more diffused kind of changes of intercentral relationships, in contrast to cortical pathology. These changes tended to reciprocate. The dynamic nature of intercentral relationships and their interhemispheric differences was revealed when changing functional states of the brain (increase and decrease of functional level) in healthy individuals and patients with organic cerebral pathology in the process of conscious and psychic activity restoration. Changing activity predominance of certain regulatory structures was considered one of the most important factors determining the dynamic nature of EEG coherence.

Los autores resumen los resultados de las investigaciones de las relaciones intercentrales de EEG de personas sanas en distintos estados funcionales y de enfermos con lesiones orgánicas del SNC, mediante análisis de coherencia. Se revelan características semejantes de la estructura de relaciones de EEG de personas sanas: la gradiente anterior-posterior de niveles medios de coherencia, el carácter de la interacción cortical-subcortical de las secciones anteriores de los hemisferios. A su vez, se detectan diferencias de frecuencia y regionales en la coherencia de EEG en diestros y zurdos, que reflejan mayoritariamente la especificidad de la interacción intracortical. Se cree que estas diferencias causan la especificidad del desarrollo y la regresión de los estados patológicos de diestros y zurdos en lesiones cerebrales orgánicas. Se señala que en las lesiones de formaciones reguladoras (diencefálicas, troncales, límbicas) Provocan unos cambios de las relaciones intercentrales más difusos que en casos de patología cortical. Estos cambios tienden a la reciprocidad. Se revela el carácter dinámico de las relaciones intercentrales y sus diferencias interhemisféricas en los cambios de los estados funcionales del cerebro (incremento, disminución del nivel de funcionamiento) en personas sanas así como en la recuperación de la conciencia y la actividad psíquica en enfermos con patología cerebral orgánica. Uno de los factores que determina el carácter dinámico del cambio de la coherencia del EEG es el cambio del predominio de la actividad de ciertas estructuras reguladoras.

Type
Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barchas, P.K., & Perlaki, K.M. (1986). Processing of preconsciously acquired information measured by hemispheric asymmetry and selection accuracy. Behavioral Neuroscience, 10, 343351.CrossRefGoogle Scholar
Beaumont, J.G., Mayes, A.R., & Rugg, M.D. (1978). Asymmetry in EEG coherence and power: Effect of task and sex. EEG and Clinical Neurophysiology, 45, 393402.CrossRefGoogle ScholarPubMed
Boldyreva, G.N. (1994). Stabil'noct' spektral'no-kogerentnyh haracteristik EEG cheloveka [Stability of EEG spectralcoherence characteristics in human] Uspekhi fiziologicheskih nauk, 25, 68.Google Scholar
Boldyreva, G.N. (2000). Electrical aktivnost' mozga cheloveka pri porajenii diencefal'nih I limbicheskih structur [Electrical activity of human brain in lesions of the diencephalic and limbic structures]. Moskow: Nauka.Google Scholar
Boldyreva, G.N., Sharova, E.V., & Dobronravova, I.S. (2000). Rol'regulatornich structur v formirovanii EEG cheloveka [The role of cerebral regulatory structures in the formation of human EEG]. Fiziologija cheloveka, 26, 1934.Google Scholar
Boldyreva, G.N., Sharova, E.V., Koptelov, Yu. M., Shchepetkov, A.N., Nikitin, K.V., Kornienko, V.N., & Fadeeva, L.M. (2005). Issledovanie geneza patologicheskich patternov EEG pri opusholevom I travmaticheskom poragenii mozga cheloveka [Study of genesis of pathological EEG patterns in tumor and traumatic lesions of the human brain]. Fiziologija cheloveka 31, 2432.Google Scholar
Boldyreva, G.N., Sharova, E.V., Zhavoronkova, L.A., & Dobrokhotova, T.A. (1992). Otrazhenie raznyh urovney reguljacii mozgovoy dejatel'nosty cheloveka v spektral'nokogerentnyh parametrah [The reflection of different levels of regulation the human brain activity at the spectral-coherence parameters]. Zhurnal visshey nervnoy dejatelnosty, 42, 439449.Google Scholar
Boldyreva, G.N., & Zhavoronkova, L.A. (1989). Kharakteristika mezhpolusharnih vzaimootnoshenii v ocenke funkcional'nogo sostojania mozga cheloveka [Characteristic of EEG interhemispheric interaction at the estimation of the brain functional state]. Zhurnal visshey nervnoy dejatelnosty, 39, 215220.Google Scholar
Boldyreva, G.N., Zhavoronkova, L.A., Sharova, E.V., & Dobronravova, I.S. (2003). Mezhcenral'nye otnoshenija EEG kak otrazhenye systemnoy organizacii organizacii v norme i patologii [The intercentral interaction of EEG as reflection of system organization of the human brain in normal and pathology]. Zhurnal visshey nervnoy dejatelnosty, 53, 391401.Google Scholar
Bragina, N.N., & Dobrokhotova, T.A. (1981). Funkcional'nie asimmetrii cheloveka [Functional asymmetries of human]. Moskow: Medicine.Google Scholar
Danze, F., Brulem, J.F., & Haddadm, K. (1989). Chronic vegetative state after severe head injury. Neurosurgical Review, 12, 477499.CrossRefGoogle ScholarPubMed
Dobronravova, I.S. (1990). Reorganizacij electricheskoy aktivnosti mozga sheloveka pri ugnetenii soznaniy (komatoznii sostojniy) [Reorganization of electrical activity of the human brain under depression of consciousness (comatose conditions)]. Zhurnal visshey nervnoy dejatelnosty, 40, 11051114.Google Scholar
Dobrokhotova, T.A., & Bragina, N.N. (1977). Funkcional'nay asimmetriy I psichizheskay patologiy ozhagovich porajeniy mozga [Functional asymmetry and mental pathology of brain local pathology] Moskow: Medicine.Google Scholar
Dobrokhotova, T.A., Zhavoronkova, L.A., Bragina, N.N., Gogitidze, N.V., & Zayzev, O.S. (1993). Vosstanovlenye soznanija posle dlitel'noy komy y parvshey I levshey s tyazheloy cherepnomozgovoy trvmoy (kliniko-electroencefalograficheskoye issledovaniye [The restoration of consciousness of right-handers and left-handers with severe cranio-cerebral trauma (clinicelectroencephalographic investigation)]. Social'naya I klinicheskaya psykhiatriya, 1, 2328.Google Scholar
Farber, D.A. (1990). Principi sistemnoi strukturno-funkcional'noi organizacii mozga, osnovnie etapi ego formirovaniya [Principles of the system structurally-functional organization of the brain, the basic stages of its formation]. In Strukturno-funkcional'naya organizacia razvivaushegosia mozga (pp.168179). Leningrad: Nauka.Google Scholar
Gevins, A.S., & Remond, A. (Eds). (1987). Methods of analysis of brain electrical and magnetic signals. In Handbook of EEG and Clinical Neurophysiology. Revised series. (Vol. 1, 4052). Amsterdam: Elsevier.Google Scholar
Gnezditsky, V.V., Popova, L.M., & Fedin, P.A. (1996). Prognosticheskoe znachenie neurofisiologicheskih pokazatelei pri netravmaticheskom appalicheskom syndrome [Prognostic significance of neurophysiological index at untraumatic apallic syndrome]. Anestesia and reanimatology, 2, 1621.Google Scholar
Grindel, O.M. (1985). Mezhcentral'nye otnoshenija v kore bol'shogo mozga po pokazatelum kogerentnosti EEG pri vosstanovlenii soznaniy I rechy posle dlitel'noy komy [The intercentral interaction in cortex brain on index of EEG coherence at recovery of consciousness and speech after long coma]. Zhurnal visshey nervnoy dejatelnosty, 35, 6067.Google Scholar
Livanov, M.N. (1972). Prostranstvennay organizaciy processov golovnogo mozga [Spatial organization of brain processes] Moskow: Nauka.Google Scholar
Lopez da Silva, F.H. (1991). Neural mechanisms underlying brain waves: From neural membrance to networks. EEG and Clinical Neurophysiology, 79, 8193.CrossRefGoogle Scholar
Newton, T.F., Leuchter, A.F., Walter, D.O., Van Gorp, W., Stern, C., Mandelkern, M., & Weiner, H. (1993). EEG coherence in men with AIDS: Association with subcortical metabolic activity. Journal of Neuropsychiatry and Clinical Neuroscience, 5, 316329.Google ScholarPubMed
Ogura, M. (1992). Neurophysiological findings and the prognosis of early-stage vegetative state. In Takakura, K. & Kanno, T. (Eds.), Proceedings of the 1st annual meeting of the Society for Treatment of Coma, Kyoto, 1, 2128.Google Scholar
Rappelsberger, P., & Petshe, H. (1988). Probability mapping: Power and coherence analysis of cognitive processes. Brain Topography, 1, 4551.CrossRefGoogle Scholar
Rath, S.A., & Klein, H.J. (1991). Current applications of the EEG in the comatose neurosurgical patient. American Journal of EEG Technology, 31, 6581.CrossRefGoogle Scholar
Rusinov, V.S. (1969). Dominanta: elektrofiziologizheskie issledovaniy [Dominanta: Electrophysiological research]. Moscow: Medicine.Google Scholar
Rusinov, V.S., Grindel, O.M., Boldyreva, G.N., & Vakar, E.M. (1987). Biopotencialy mozga cheloveka [Human brain biopotentials]. Moskow: Medicine.Google Scholar
Schack, B., & Krause, W. (1995). Dynamic power and coherence analysis in ultra short-term cognitive processes. Brain Topography, 8, 127136.CrossRefGoogle ScholarPubMed
Sharova, E.V. (1999). Adaptivno-kompensatornie perestroiki bioelektricheskoi aktivnosti mozga cheloveka pri povregdenii stvolovih obrazovanii [The adaptive-compensatory reorganizations of the human brain's bioelectric activity at the brainstem damage]. Summary of doctoral dissertation. Moskow: Institute of Higher Nervous Activity and Neurophysiology RAS.Google Scholar
Sharova, E.V., Borodkin, S.M., Gognitidze, N.V., Lukianov, V.I., & Muhanov, T.K. (1992). Funkcional'naya znachimost harakteristik prostranstvenno-vremennoi organozacii EEG u bol'nih s cherepno-mozgovoi travmoi [The functional importance of spatial-temporal EEG-organization's characteristics in patients with heavy traumatic brain injury ]. Fiziologija cheloveka, 18, 2230.Google Scholar
Sharova, E.V., Manelis, N.G., Kulikov, M.A., & Barkalaia, D.B. (1995). Vliyanie stvolovih struktur na formirovanie funkcional'nogo sostoyania bol'shih polushari golovnogo mozga [Influence of brainstem structures on the functional state of human brain hemispheres]. Zhurnal visshey nervnoy dejatelnosty, 45, 876885.Google Scholar
Sharova, E.V., Kulikov, M.A., & Zaitsev, O.S. (1997). The peculiarities of EEG dynamics during mental recovery after long-term posttraumatic coma. EEG and Clinical Neurophysiology, 103, 207.CrossRefGoogle Scholar
Sharova, E.V., Obraztsova, E.R., Zaitsev, S., Kulikov, M.A., & Urakov, S.V. (2001). Osobennosti EEG pri posttravmaticheskom korsakovskom sindrome [EEG peculiarities in posttraumatic Korsakov's syndrome]. Zhurnal Nevrologii i psihiatrii im. S.S.Korsakova, 101, 3238.Google Scholar
Shepoval'nikov, A.N., & Citseroshin, M.N. (1999). Evolucionnie aspekti stanovlenia integrativnoi deyatelnosti mozga cheloveka [Evolutionary aspects of the integrative human brain activity becoming] Rossiiskiy fisiol. Jurnal imeni I.M.Sechenova, 85, 11871207.Google Scholar
Thatcher, R.W. (1994). Cyclic cortical reorganization, origins of human cognitive development. In Dawson, G. & Fisher, K. (Eds.), Human behavior and the developing brain (pp. 232266). New York: Guilford Press.Google Scholar
Tucker, D. N., Roth, R.S., & Bair, T.B. (1986). Functional connections among cortical regions: Topography of EEG coherence. EEG and Clinical Neurophysiology, 63, 242250.CrossRefGoogle ScholarPubMed
Zhavoronkova, L.A. (2006). Pravshi-levshi: mezhpolusharnaja asimmetrja elektricheskoi aktivnosti mozga cheloveka [Righthanders - left-handers: interhemispheric asymmetry of electrical activity of the human brain] Moscow: NaukaGoogle Scholar
Zhavoronkova, L.A., Boldyreva, G.N., & Dobrokhotova, T.A. (1988). Zavisimost' organizacii elektricheskoy aktivnosti mozga cheloveka ot dominantnosi polusharija [The dependence of electrical activity organization of the human brain on hemispheric dominance]. Zhurnal visshey nervnoy dejatelnosty, 38, 620626.Google Scholar
Zhavoronkova, L.A., Kholodova, N.B., Zubovsky, G.A., Gogitidze, N.V., & Koptelov, Y.M. (1995). EEG power mapping, dipole source and coherence analysis in Chernobyl patients. Brain Topography, 8, 161168.CrossRefGoogle ScholarPubMed
Zhavoronkova, L.A., Ryzhov, B.N., Barmakova, A.B., & Kholodova, N.B. (2002). Osobennosti narushenja EEG I kognitivnikh funkcii posle vozdeistvija radiacii [Features of EEG and cognitive disorders after exposure to radiation]. Doklady Rossiiskoy akademii nauk, 386, 418422.Google Scholar
Zhavoronkova, L.A., & Trofimova, E.V. (1997). Dinamika kogerentnosty EEG I dvigatel'nikh reakciy u pravshey i levshey pri zasipanii. Soobscheniye I. Analiz bnutripolusharnykh sootnosheniy [The dynamics of EEG coherence and movement reactions in right-handers and left-handers during sleeping. Communication I. Analysis of intrahemispheric interaction]. Fiziologija cheloveka, 23, 1826.Google Scholar
Zhavoronkova, L.A., & Trofimova, E.V. (1998). Dinamika kogerentnosty EEG u pravshey i levshey pri zasipanii. Soobscheniye II. Analiz mezhpolusharnykh sootnosheniy [The dynamics of EEG coherence in right-handers and left-handers during sleeping. Communication II. Analysis of iterhemispheric interaction]. Fiziologija cheloveka, 24, 3240.Google Scholar