Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T06:06:45.670Z Has data issue: false hasContentIssue false

Effects of Trophic Poisoning with Methylmercury on the Appetitive Elements of the Agonistic Sequence in Fighting-Fish (Betta Splendens)

Published online by Cambridge University Press:  10 April 2014

Amauri Gouveia Jr.*
Affiliation:
Universidade Federal do Pará Universidade Estadual Paulista, Bauru
Caio Maximino de Oliveira
Affiliation:
Universidade Estadual Paulista, Bauru
Cynthia Ferreira Romão
Affiliation:
Universidade Estadual Paulista, Bauru
Thiago Marques de Brito
Affiliation:
Universidade Estadual Paulista, Bauru
Dora Fix Ventura
Affiliation:
Universidade de São Paulo
*
Correspondence concerning this article should be addressed to Amauri Gouveia Jr., Departamento de Fisiologia, Centro de Ciências Biológicas, UFPA/Campus Guamá – r., Belém – PA, Brazil. E-mail: [email protected]

Abstract

The aggressive display in Betta splendens is particularly prominent, and vital to its adaptation to the environment. Methylmercury is an organic variation of Hg that presents particularly pronounced neuro-behavioral effects. The present experiments aim to test the effect of acute and chronic poisoning with methylmercury on the display in Bettas. The animals were poisoned by trophic means in both experiments (16 ug/kg in acute poisoning; 16 ug/kg/day for chronic poisoning), and tested in agonistic pairs. The total frequency of the display was recorded, analyzing the topography of the agonistic response. The methylmercury seems to present a dose- and detoxification-dependent effect on these responses, with a more pronounced effect on motivity in acute poisoning and on emotionality in the chronic poisoning. It is possible that this effect could be mediated by alteration in the mono-amino-oxidase systems.

El despliegue agresivo en la Betta splendens es especialmente prominente y es vital para su adaptación al medio ambiente. Metil-mercurio es una variación orgánica de Hg que presenta efectos neuro-conductuales especialmente pronunciados. Los experimentos actuales intentan poner aprueba el efecto de envenenamiento agudo y crónico con metil-mercurio sobre el despliegue en Bettas. Los animales fueron envenenados tróficamente en ambos experimentos (16 ug/kg e el envenenamiento agudo) y probados en parejas agonistas. Se registró la frecuencia total del despliegue, analizando la topografía de la respuesta agonista. El metil-mercurio parece presentar un efecto dependiente de la dosis y de la detoxificación sobre estas respuestas, con un efecto más pronunciado sobre la motilidad en el envenenamiento agudo y sobre la emotividad en el envenenamiento crónico. Posiblemente, este efecto podría mediarse por la alteración en los sistemas de mono-amino-oxidasa.

Type
Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrio, F., Anadón, R., & Rodríguez-Moldes, I. (1999). Distribution of serotonin (5HT)-immunoreactive structures in the central nervous system of two chondrostean species (Acipenser baeri and Huso huso). Journal of Comparative Neurology, 407, 333348.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Allen, J.W., El-Oqayli, H., Aschner, M., Syversen, T., & Sonnewald, U. (2001). Methylmercury has a selective effect on mitochondria in cultured astrocytes in the presence of [U-13C]glutamate. Brain Research, 908, 149154.CrossRefGoogle Scholar
Arbit, J. (1957). Effects of LSD-25 upon Betta splendens: A reliability of a bioassay technique. Journal of Appied. Physiology, 10, 317318.CrossRefGoogle ScholarPubMed
Aschner, M., Mullaney, K.J., Wagoner, D.E. Jr., Lash, L.H., & Kimelberg, H.K. (1995). Adenosine modulates methylmercuric chloride (MeHgCl)-induced D-aspartate release from neonatal rat primary astrocyte cultures. Brain Research, 689, 18.CrossRefGoogle ScholarPubMed
Aschner, M., Vitarella, D., Allen, J.W., Conklin, D.R., & Cowan, K.S. (1998). Methylmercury-induced astrocytic swelling is associated with activation of the Na+/H+ antiporter, and is fully reversed by amiloride. Brain Research, 799, 207214.CrossRefGoogle ScholarPubMed
Aschner, M., Yao, C.P., Allen, J.W., & Tan, K.H. (2000). Methylmercury alters glutamate transport in astrocytes. Neurochemistry International, 37, 199206.CrossRefGoogle ScholarPubMed
Atchison, G.J., Henry, M.G., & Sandheinrich, M. (1987). Effects of metals on fish behavior: A review. Environmental Biology of Fishes 18, 1125.CrossRefGoogle Scholar
Azevedo, F.A. (2003). Toxicologia do Mercúrio. São Carlos, São Paulo: Ed. Rima InterTox.Google Scholar
Baatrup, E. (1991). Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comparative Biochemistry and Physiology, 100, 253257.Google ScholarPubMed
Baenninger, R. (1968). Catechol amines and social relations in Siamese fighting fish. Animal Behavior, 16, 442447.CrossRefGoogle ScholarPubMed
Belletti, S., Orlandini, G., Vettoru, M.V., Mutti, A., Uggeri, J., Scandroglio, R., Alinov, i R., & Gatti, R. (2002). Time course assessment of methylmercury effects on C6 glioma cells: Submicromolar concentrations induce oxidative DNA damage and apoptosis. Journal of Neuroscience Research, 70, 703711.CrossRefGoogle ScholarPubMed
Berman, M.E., Tracy, J.I., & Coccaro, E.F. (1997). The serotonin hypothesis of aggression revisited. Clinical Psychology Review, 17, 651665.CrossRefGoogle ScholarPubMed
Bernstssen, M.H.G., Aatland, A., & Handyc, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions and altered behavior in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology, 65, 5572.CrossRefGoogle Scholar
Blanchard, D.C., & Blanchard, R.J. (1978). Ethoexperimental Approaches to the Biology of Emotion. Annual Review of Psychology, 39, 4368.CrossRefGoogle Scholar
Blanchard, D.C., Griebel, G., Rodgers, R.J., & Blanchard, R.J. (1998). Benzodiazepine and serotoninergic modulation of antipredator and conspecific defense. Neuroscience and Biobehavioral Reviews, 22, 597612.CrossRefGoogle Scholar
Bonci, D.M.O., de Lima, S.M.A., Grötzner, S.R., Oliveira Ribeiro, C.A., Hamassaki, D.E., & Ventura, D.F. (2006). Losses of immunoreactive parvalbumin amacrine and immunoreactive _protein kinase C bipolar cells caused by methylmercury chloride intoxication in the retine of the tropical fish Hoplias malabaricus. Brazilian Journal of Medical and Biological Research, 39, 405410.CrossRefGoogle Scholar
Bondy, S.C., & Agrawa, l A.K. (1980). The inhibition of cerebral high affinity receptor sites by lead and mercury compounds. Archives of Toxicology, 46, 249256.CrossRefGoogle ScholarPubMed
Bradford, M.R. Jr., (1995). Comparative aspects of forebrain organization in the ray-finned fishes: Touchstones or not? Brain, Behavior and Evolution, 46, 259274.CrossRefGoogle Scholar
Bronstein, P.M. (1980). Betta splendens: A territorial note. Bulletin of the Psychonomic Society, 16, 484485.CrossRefGoogle Scholar
Bronstein, P.M. (1981a). Commitments to aggression and nest sites in male Betta splendens. Journal of Comparative Physiology and Psychology, 95, 436449.CrossRefGoogle ScholarPubMed
Bronstein, P.M. (1981b). Social reinforcement in Betta splendens: A reconsideration. Journal of Comparative Physiology and Psychology. 95, 943950.CrossRefGoogle Scholar
Bronstein, P.M. (1982). Breeding, paternal behavior, and their interruption in Betta splendens. Animal Learning & Behavior, 10, 145151.CrossRefGoogle Scholar
Bronstein, P.M. (1984). Agonistic and reproductive interactions in Betta splendens. Journal of Compatrative Psychology, 98, 421431.CrossRefGoogle ScholarPubMed
Bronstein, P.M. (1985). Predictors of dominance in male Betta splendens. Journal of Comparative Psychology, 99, 4755.CrossRefGoogle ScholarPubMed
Butler, A.B. (2000). Topography and topology of the teleosts telencephalon: A paradox resolved. Neuroscience Letters, 293, 9598.CrossRefGoogle ScholarPubMed
Castoldi, A.F., Candura, S.M., Costa, P., Manzo, L., & Costa, L.G. (1996). Interaction of mercury compounds with muscarinic receptor subtypes in the rat brain. Neurotoxicology, 17, 735742.Google ScholarPubMed
Castoldi, A.F., Coccini, T., Ceccatelli, S., & Manzo, L. (2001). Neurotoxicity and molecular effects of methylmercury. Brain Research Buletin, 55, 197203.CrossRefGoogle ScholarPubMed
Chakrabarti, S.K., Loua, K.M., Bai, C., Durham, H., & Panisset, J-C. (1998). Modulation of monoamine oxidase activity in different brain regions and platelets following exposure of rats to methylmercury. Neurotoxicology and Teratology, 20, 161168.CrossRefGoogle ScholarPubMed
Daré, E., Fetissov, S., Hökfelt, T., Hall, H., Ögren, S.O., & Ceccatelli, S. (2003). Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D2 receptor binding. Naunyn-Schmiedeberg's Archives of Pharmacology, 367, 500508.CrossRefGoogle ScholarPubMed
Evans, C.S. (1985). Display vigour and subsequent fight performance in the Siamese fighting fish, Betta splendens. Behavioral Processes 11, 113121.CrossRefGoogle ScholarPubMed
Faro, L.R.F., Durán, R., Nascimento, J.L.M., Alfonso, M., & Picanço-Diniz, C.W. (1997). Effects of methylmercury on the in Vivo release of dopamine and its acidic metabolites DOPAC and HVA from striatum of rats. Bulletin of Environmental Contamination and Toxicology, Ecotoxicology and Environmental Safety, 38, 9598.CrossRefGoogle Scholar
Faro, L.R.F., Nascimento, J.L.M., Alonso, M., & Durán, R. (2002). Protection of methylmercury effects on the in vivo dopamine release by NMDA receptor antagonists and nitric oxide synthase inhibitors. Neuropharmacology, 42, 612618.CrossRefGoogle ScholarPubMed
Fjeld, E., Haugoen, T.O., & Vlestad, L.A. (1998). Permanent impairment in the feeding behavior of grayling (Thymallus Thymalus) exposed to methylmercury during embryogenesis. Science of the Total Environment, 213, 247254.CrossRefGoogle Scholar
Flood, N.C., Overmier, J.B., & Savage, G.E. (1976). Teleost telencephalon and learning: an interpretive review of data and hypotheses. Physiology & Behavior, 16, 783788.CrossRefGoogle ScholarPubMed
Fonfría, E., Rodríguez-Farré, E., & Suñol, C. (2001). Mercury interaction with the GABAA receptor modulates benzodiazepine binding site in primary cultures of mouse cerebellar granule cells. Neuropharmacology, 41, 819833.CrossRefGoogle ScholarPubMed
Frankenhuis-van de Heuvel, T.H.M., & Nieuwenhuys, R. (1984). Distribution of serotonin-immunoreactivity in the diencephalon and mesencephalon of the trout, Salmo gairdneri. Cellbodies, fibres and terminals. Anatomy & Embriology, 169, 193204.CrossRefGoogle Scholar
Gassó, S., Suñol, C., Sanfeliu, C., Rodríguez-Farré, E., & Cristòfol, R.M. (2000). Pharmacological characterization of the effects of methylmercury and mercuric chloride on spontaneous noradrenaline release from rat hippocampal slices. Life Sciences, 67, 12191231.CrossRefGoogle ScholarPubMed
Girault, L., Boudou, A. & Dufourc, E.J. (1997). Methyl-mercury interactions with phospholipid membranes as reported by fluorescense, 31P and 199Hg NMR. Biochimica et Biophysica Acta, 1325, 250262.Google Scholar
Gorlick, D.L. (1989). Motor inervation of respiratory muscles and an opercular display muscle in Siamese fighting fish Betta splendens. Journal of Comparative Neurology, 290, 412422.CrossRefGoogle Scholar
Graeff, F.G. (2002). On serotonin and experimental anxiety. Psychopharmacology (Berlim) 163, 467476.CrossRefGoogle ScholarPubMed
Hare, M.F., & Atchison, W.D. (1995a). Methylmercury mobilizes Ca++ from intracellular stores sensitive to inositol 1,3,5-triphosphate in NG108-15 cells. Journal of Pharmacology and Experimental Therapeutics, 272, 10161023.Google Scholar
Hare, M.F., & Atchison, W.D. (1995b). Nifedipine and tetrodotoxin delay the onset of methylmercury-induced increase in [Ca2+]i in NG108-15 cells. Toxicoogy and. Applied Pharmacoogy,. 135, 299307.CrossRefGoogle ScholarPubMed
Harris, R.C., & Bodaly, R.A. (1998). Temperature, growth and dietary effects on fish mercury dynamics on two Ontario lakes. Biogeochemistry, 40, 175187.CrossRefGoogle Scholar
Hartman, D.E. (1995). Neuropsychological toxicology: Identification and assessment of human neurotoxic syndromes (2nd ed.). New York: Springer.CrossRefGoogle Scholar
Hoffmeyer, R.E., Singh, S.P., Doonan, C.J., Ross, A.R., Hughes, R.J., Pickering, I.J., & George, G.N. (2006). Molecular mimicry in mercury toxicology. Chemical Research in Toxicology, 19, 753759.CrossRefGoogle ScholarPubMed
Hrdina, P.D., Peters, D.A., & Singhal, R.L. (1976). Effects of chronic exposure to cadmium, lead and mercury of brain biogenic amines in the rat. Research Communications in Biological Psychology and Psychiatry, 15, 483493.Google ScholarPubMed
Juárez, B.I., Portillo-Salazar, H., González-Amaro, R., Mandeville, P., Aguirre, J.R. & Jiménez, M.E. (2005). Participation of N-methyl-D-aspartate receptors on methylmercury-induced DNA damage in rat frontal cortex. Toxicology, 207, 223229.CrossRefGoogle ScholarPubMed
Juaréz, B. I., Portillo-Salazar, H., Gonzalez-Amaro, R., Mandeville, P., Aguirre, J. R., & Jimenez, M. E. (2005). Participation of N-methyl-D-aspartate receptors on methylmercury-induced DNA damage in rat frontal cortex. Toxicology, 207, 223229.CrossRefGoogle ScholarPubMed
Kapsimali, M., Vidal, B., Gonzalez, A., Dufour, S., & Vernier, P. (2000). Distribution of the mRNA encoding the four dopamine D1 receptor subtypes in the brain of the european eel (Anguilla anguilla): Comparative approach to the function of D1 receptors in vertebrates. Journal of Comparative Neurology, 419, 320343.3.0.CO;2-F>CrossRefGoogle Scholar
Kaur, P., Aschner, M., & Syversen, T. (2006). Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes. Neurotoxicology, 4, 492500.CrossRefGoogle Scholar
Klein, R.M, Figler, M.H., & Peeke, H.V.S. (1976). Modification of consummatory (attack) behavior resulting from prior habituation of appetitive (threat) components of the agonistic sequence in male Betta splendens (Pisces, Belontiidae). Behaviour, 58, 125.CrossRefGoogle Scholar
Komulainen, H., & Tuomisto, J. (1981). Interference of methylmercury with monoamine uptake and release in rat brain synaptosomes. Acta Pharmacologica et Toxicoogica, 48, 214222.CrossRefGoogle Scholar
Kuo, T-C., Huang, C-L., & Lin-Shiau, S-Y. (2002). Methylmercury inhibits nitric oxide production mediated by Ca2+ overload and protein kinase A activation. Toxicology, 176, 113122.CrossRefGoogle ScholarPubMed
Fitzgerald, L.W., Kaplinsky, L., & Kimelberg, H.K. (1990) Serotonin metabolism by monoamine oxidase in rat primary astrocyte cultures. Journal of Neurochemistry 55, 20082014.CrossRefGoogle ScholarPubMed
Lesch, K.P., & Merschdorf, U. (2000). Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behavioral Sciences and the Law, 18, 581604.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Ma, P. M. (1997). Catecholarminergic systems in the zebrafish. III. Journal of Comparative Neurology, 381, 411427.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Marino-Neto, J., & Sabbatini, R.M.E. (1983a). Neuroethological analysis of the effects of telencephalic lesions on aggressive behavior of Siamese fighting fish (Betta splendens). Proceedings of the 18th Congress of the Sociedade Brasileira de Fisiologia, 470.Google Scholar
Marino-Neto, J., & Sabbatini, R.M.E. (1983b). Discrete telencephalic lesions accelerate the habituation rate of behavioral arousal responses in Siamese fighting fish (Betta splendens). Brazilian Journal of Medical and Biological Research, 16, 271278.Google ScholarPubMed
Marino-Neto, J., & Sabbatini, R.M.E. (1988). A stereotaxic atlas for the telencephalon of the Siamese fighting fish (Betta splendens). Brazilian Journal of Medical and Biological Research, 21, 971986.Google ScholarPubMed
McNaughton, N., & Corr, P.J. (2004). A two-dimensional neuropsychology of defense: Fear/anxiety and defensive distance. Neuroscience and Biobehavioral Reviews, 28, 285305.CrossRefGoogle ScholarPubMed
Meek, J., Joosten, H.W.J., & Hafmans, T.G.M. (2004). Distribution of noradrenaline-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. Journal of Comparative Neurology, 328, 145160.CrossRefGoogle Scholar
Meliska, C.J., Meliska, J.A., & Peeke, H.V.S. (1980). Threat displays and combat aggression in Betta splendens following visual exposure to conspecifics and one-way mirrors. Behavioral and Neural Biology, 28, 473486.CrossRefGoogle ScholarPubMed
Meliska, J.A., & Meliska, C.J. (1976). Effects of habituation on threat display and dominance establishment in the Siamese fighting fish, Betta splendens. Animal Learning & Behavior, 4, 167171.CrossRefGoogle ScholarPubMed
Meliska, J.A., Meliska, C.J., Hoyenga, K.T., Hoyenga, K.B., & Ward, E.F. (1975). Approach tendency and threat display as related to social status of Siamese fighting fish, Betta splendens. Animal Learning & Behavior, 3, 135139.CrossRefGoogle Scholar
Miczek, K.A., Weerts, E., Vivian, J.A., & Barros, H.M. (1995). Aggression, anxiety and vocalizations in animals: GABAA and 5-HT anxyolitics. Psychopharmacology, 121, 3856.CrossRefGoogle Scholar
Morken, T.S., Sonnewald, U., Aschner, M., & Syversen, T. (2005). Effects of methylmercury on primary brain cells in mono- and co-culture. Toxicological Sciences, 87, 169175.CrossRefGoogle ScholarPubMed
Munro, A.D. (1986). The effects of apomorphine, d-amphetamine and chlorpromazine on the aggressiveness of isolated Aequidens pulcher (Teleostei, Cichlidae). Psychopharmacology, 88, 124128.CrossRefGoogle ScholarPubMed
Nascimento, E.S., & Chasin, A.A.M. (2001). Ecotoxicologia do Mercúrio e seus Compostos. Salvador, Brazil: Cadernos de Referência Ambiental v. 1Google Scholar
Ninomiya, T., Imamura, K., Kuwahata, M., Kindaichi, M., Susa, M., & Ekino, S. (2005). Reappraisal of somatosensory disorders in methylmercury poisoning. Neurotoxicology & Teratology, 27, 643653.CrossRefGoogle ScholarPubMed
Northcutt, R.G. (2006). Connections of the lateral and medial divisions of the goldfish telencephalic pallium. Journal of Comparative Neurology, 494, 903943.CrossRefGoogle ScholarPubMed
Ottoni, E.B. (2000). EthoLog 2.2: A tool for the transcription and timing of behavior observation sessions. Behavior Research Methods, Instruments, & Computers, 32, 446449.CrossRefGoogle ScholarPubMed
Panksepp, J. (1998). Affective neurosciences. New York: Oxford.CrossRefGoogle Scholar
Portavella, M., Vargas, J.P., Torres, B., & Salas, C. (2002). The effects of telencephalic pallial lesions on spatial, temporal and emotional learning in goldfish. Brain Research Bulletin, 57, 397399CrossRefGoogle ScholarPubMed
Regine, M.B., Gilles, D., Yannick, D., Alain, B. (2006). Mercury distribution in fish organs and food regimes: Significant relationships from twelve species collected in French Guiana (Amazonian basin). Science of the Total Environonment, 368, 262270.CrossRefGoogle ScholarPubMed
Rhoad, K.D., Kalat, J.W., Klopfer, P.H. (1975). Aggression and avoidance by Betta splendens toward natural and artificial stimuli. Animal Learning & Behavior, 3, 271276.CrossRefGoogle Scholar
Ritchie, T.C., Livingston, C.A.,, Hughes, M.G., McAdoo, D.J., & Leonard, R.B. (1983). The distribution of serotonin in the CNS of an elasmobranch fish: Immunocytochemical and biochemical studies in the Atlantic stingray, Dasyatis sabina. Journal of Comparative Neuroology, 221, 429443.CrossRefGoogle ScholarPubMed
Roegge, C.S., Wang, V.C., Powers, B.E,, Klintsova, A.Y., Villareal, S., Greenough, W.T., & Schantz, S.L. (2004). Motor impairment in rats exposed to PCBs and methylmercury during early development. Toxicological Sciences, 77, 315324.CrossRefGoogle ScholarPubMed
Royalty, J., Taylor, G.T., Korol, B.A. (1987). The effects of prenatal exposure to methylmercury on aggressive behavior in the rat. Neurotoxicology & Teratology, 9, 8793.CrossRefGoogle ScholarPubMed
Scheuhammer, A.M., & Cherian, M.G. (1985). Effects of heavy metal cations sulfhydryl reagents and other chemical agents on striatal D2 dopamine receptors. Biochememical Pharmacology, 34, 34053413.CrossRefGoogle ScholarPubMed
Setini, A., Pierucci, F., Senatori, O., & Nicotra, A. (2005). Molecular characterization of monoamine oxidase in zebrafish (Danio rerio). Comparative Biochemistry & Physiology. Part B Biochemistry & Molecular Biology, 140, 153161.CrossRefGoogle ScholarPubMed
Simpson, M.J.A. (1968). The display of the Siamese fighting fish, Betta splendens. Animal Behavior Monographs, 1, 173.Google Scholar
Smith, G.M., & Weis, J.S. (1997). Predator-prey relationships in mummichogs (Fundulus heteroclitus [L.]): Effects of living in a polluted environment. Journal of Experimental Marine Biology and Ecology, 209, 7587.CrossRefGoogle Scholar
Tarabova, B., Kurejova, M., Sulova, Z., Drabova, M., & Lacinova, L. (2006). Inorganic mercury and methylmercury inhibit the Cav3.1 channel expressed in human embryonic kidney 293 cells by different mechanisms. Journal of Pharmacology and Experimental Therapeutics, 317, 418427.CrossRefGoogle ScholarPubMed
Webber, H.W., & Haines, T.A. (2003). Mercury effects on predatory avoidance behavior of a forage fish, Golden shiner (Notemigus crysoleucas). Environmental Toxicology and Chemistry, 22, 15561561.CrossRefGoogle ScholarPubMed
Weis, J.S., Smith, G., Zhou, T., Santiago-Bass, C., & Weis, P. (2001). Effects of contaminants on behavior: Biochemical mechanisms and ecological consequences. BioScience, 51, 209217.CrossRefGoogle Scholar
Westlund, K.N., Denney, R.M,, Kochersperger, L.M., Rose, R.M., & Abell, C.W. (1985). Distinct monoamine oxidase A and B populations in primate brain. Science, 11, 181183.CrossRefGoogle Scholar
Woebser, G. (1975). Acute toxicity of methylmercury chloride and mercuric chloride for rainbow trout (Salmo gairdneri) fry and fingerlings. Journal of the Fisheries Research Board of Canada, 32, 20052013.CrossRefGoogle Scholar
Yasutake, A., Nakano, A., Miyamoto, K., & Eto, K. (1997). Chronic effects of methylmercury in rats. I. Biochemical aspects. Tohoku Journal of Experimental Medicine, 3, 185196.CrossRefGoogle Scholar
Yee, S., & Choi, B.H. (1994). Methylmercury poisoning induces oxidative stress in the mouse brain. Experimental & Molecular Pathology, 60, 188196.CrossRefGoogle ScholarPubMed
Yuan, Y., Otero-Montañez, J.K.L., Yao, A., Herden, C.J., Sirois, J.E., & Atchison, W.D. (2005). Inward rectifying and voltagegated outward potassium channels exhibit low sensitivity to methylmercury. Neurotoxicology, 26, 439454.CrossRefGoogle Scholar