Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T20:59:11.507Z Has data issue: false hasContentIssue false

Effects of Acute Stress on Decision Making under Ambiguous and Risky Conditions in Healthy Young Men

Published online by Cambridge University Press:  20 September 2016

Irene Cano-López
Affiliation:
Universidad de Valencia (Spain)
Beatriz Cano-López
Affiliation:
Universidad de Valencia (Spain)
Vanesa Hidalgo
Affiliation:
Universidad de Valencia (Spain)
Esperanza González-Bono*
Affiliation:
Universidad de Valencia (Spain)
*
*Correspondence concerning this article should be addressed to Esperanza Gonzalez-Bono. Depto. Psicobiología/IDOCAL. Universidad de Valencia. Avda. Blasco Ibáñez, 21. CP. 46010. Valencia (Spain). Phone: 96–3864617. Fax: 96–3864668. E-mail: [email protected]

Abstract

Acute stress and decision making (DM) interact in life – although little is known about the role of ambiguity and risk in this interaction. The aim of this study is to clarify the effect of acute stress on DM under various conditions. Thirty-one young healthy men were randomly distributed into two groups: experimental and control. DM processes were evaluated before and after an experimental session. For the experimental group, the session consisted of an acute stress battery; and the protocol was similar for the control group but the instructions were designed to minimize acute stress. Cardiovascular variables were continuously recorded 30 minutes before the DM tasks and during the experimental session. Cortisol, glucose, mood responses, and personality factors were also assessed. Acute stress was found to enhance disadvantageous decisions under ambiguous conditions (F(1, 29) = 4.16, p = .05, η2p = .13), and this was mainly explained by the stress induced cortisol response (26.1% of variance, F(1, 30) = 11.59, p = .002). While there were no significant effects under risky conditions, inhibition responses differed between groups (F(1, 29) = 4.21, p = .05, η2p = .13) and these differences were explained by cardiovascular and psychological responses (39.1% of variance, F(3, 30) = 7.42, p < .001). Results suggest that DM tasks could compete with cognitive resources after acute stress and could have implications for intervention in acute stress effects on DM in contexts such as addiction or eating disorders.

Type
Research Article
Copyright
Copyright © Universidad Complutense de Madrid and Colegio Oficial de Psicólogos de Madrid 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 715. http://dx.doi.org/10.1016/0010-0277(94)90018-3 CrossRefGoogle ScholarPubMed
Bezdjian, S., Baker, L. A., Lozano, D. I., & Raine, A. (2009). Assessing inattention and impulsivity in children during the Go/no go Task. The British Journal of Developmental Psychology, 27, 365383. http://dx.doi.org/10.1348/026151008X314919 CrossRefGoogle Scholar
Brand, M., Fujiwara, E., Borsutzky, S., Kalbe, E., Kessler, J., & Markowitsch, H. J. (2005). Decision making deficits of Korsakoff patients in a new gambling task with explicit rules: Associations with executive functions. Neuropsychology, 19, 267277. http://dx.doi.org/10.1037/0894-4105.19.3.267 CrossRefGoogle Scholar
Brand, M., Labudda, K., & Markowitsch, H. J. (2006). Neuropsychological correlates of decision-making in ambiguous and risky situations. Neural Networks, 19, 12661276. http://dx.doi.org/10.1016/j.neunet.2006.03.001 CrossRefGoogle ScholarPubMed
Buckert, M., Schwieren, C., Kudielka, B. M., & Fiebach, C. J. (2014). Acute stress affects risk taking but not ambiguity aversion. Frontiers in Neuroscience, 8, 111. http://dx.doi.org/10.3389/fnins.2014.00082 CrossRefGoogle Scholar
Cabib, S., & Puglisi-Allegra, S. (2012). The mesoaccumbens dopamine in coping with stress. Neuroscience and Biobehavioral Reviews, 36, 7989. http://dx.doi.org/10.1016/j.neubiorev.2011.04.012 CrossRefGoogle ScholarPubMed
Epstein, S., Pacini, R., Denes-Raj, V., & Heier, H. (1996). Individual differences in intuitive–experiential and analytical–rational thinking styles. Journal of Personality and Social Psychology, 71, 390405. http://dx.doi.org/10.1037/0022-3514.71.2.390 CrossRefGoogle ScholarPubMed
Gathmann, B., Schulte, F. P., Maderwald, S., Pawlikowski, M., Starcke, K., Schäfer, L. S., … Brand, M. (2014). Stress and decision making: Neural correlates of the interaction between stress, executive functions, and decision making under risk. Experimental Brain Research, 232, 957973. http://dx.doi.org/10.1007/s00221-013-3808-6 CrossRefGoogle ScholarPubMed
Golden, C. J. (1978). Stroop Color and Word Test. A manual for clinical and experimental uses. Illinois, IL: Stoelting Company.Google Scholar
Gupta, R., Koscika, T. R., Bechara, A., & Tranel, D. (2011). The amygdala and decision-making. Neuropsychologia, 49, 760766. http://dx.doi.org/10.1016/j.neuropsychologia.2010.09.029 CrossRefGoogle ScholarPubMed
Hines, E. A., & Brown, G. E. (1932). The cold pressor test for measuring the reactibility of blood pressure. American Heart Journal, 11, 19.CrossRefGoogle Scholar
Labudda, K., Woermann, F. G., Mertens, M., Pohlmann-Eden, B., Markowitsch, H. J., & Brand, M. (2008). Neural correlates of decision making with explicit information about probabilities and incentives in elderly healthy subjects. Experimental Brain Research, 187, 641650. http://dx.doi.org/10.1007/s00221-008-1332-x CrossRefGoogle ScholarPubMed
Lejuez, C. W., Read, J. P., Kahler, C. W., Richards, J. B., Ramsey, S. E., Stuart, G. L., … Brown, R. A. (2002). Evaluation of a behavioral measure of risk taking: The balloon analogue risk task (BART). Journal of Experimental Psychology: Applied, 8, 7584. http://dx.doi.org/10.1037/1076-898X.8.2.75 Google ScholarPubMed
Lighthall, N. R., Sakaki, M., Vasunilashorn, S., Nga, L., Somayajula, S., Chen, E. Y., … Mather, M. (2012). Gender differences in reward-related decision processing under stress. Social Cognitive and Afective Neuroscience, 7, 476484. http://dx.doi.org/10.1093/scan/nsr026 CrossRefGoogle ScholarPubMed
McNair, D. M., Lorr, M., & Droppleman, L. F. (1971). Manual for the Profile of Mood States. San Diego, CA: EdITS/Educational and Industrial Testing Services.Google Scholar
Morgado, P., Sousa, N., & Cerqueira, J. J. (2015). The impact of stress in decision making in the context of uncertainty. Journal of Neuroscience Research, 93, 839847. http://dx.doi.org/10.1002/jnr.23521 CrossRefGoogle ScholarPubMed
Pabst, S., Brand, M., & Wolf, O. T. (2013a). Stress and decision making: A few minutes make all the difference. Behavioural Brain Research, 250, 3945. http://dx.doi.org/10.1016/j.bbr.2013.04.046 CrossRefGoogle ScholarPubMed
Pabst, S., Brand, M., & Wolf, O. T. (2013b). Stress effects on framed decisions: There are differences for gains and losses. Frontiers in Behavioural Neuroscience, 7, 142. http://dx.doi.org/10.3389/fnbeh.2013.00142 CrossRefGoogle ScholarPubMed
Pabst, S., Schoofs, D., Pawlikowski, M., Brand, M., & Wolf, O. T. (2013). Paradoxical effects of stress and an executive task on decisions under risk. Behavioral Neuroscience, 127, 369379. http://dx.doi.org/10.1037/a0032334 CrossRefGoogle Scholar
Palacios, E., Paíno, S. G., & Alameda, J. R. (2010). Programa Cartas. [Cards Program]. Oviedo, Spain: University of Oviedo and University of Huelva.Google Scholar
Porcelli, A. J., & Delgado, M. R. (2009). Acute stress modulates risk taking in financial decision making. Psychological Science, 20, 278283. http://dx.doi.org/10.1111/j.1467-9280.2009.02288.x CrossRefGoogle ScholarPubMed
Preston, S. D., Buchanan, T. W., Stansfield, R. B., & Bechara, A. (2007). Effects of anticipatory stress on decision making in a gambling task. Behavioral Neuroscience, 121, 257263. http://dx.doi.org/10.1037/0735-7044.121.2.257 CrossRefGoogle Scholar
Pruessner, J. C., Kirschbaum, C., Meinlschmidt, G., & Hellhammer, D. H. (2003). Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology, 28, 916931. http://dx.doi.org/10.1016/S0306-4530(02)00108-7 CrossRefGoogle ScholarPubMed
Rao, H., Korczykowski, M., Pluta, J., Hoang, A., & Detre, J. A. (2008). Neural correlates of voluntary and involuntary risk taking in the human brain: An fMRI study of the Balloon Analog Risk Task (BART). NeuroImage, 42, 902910. http://dx.doi.org/10.1016/j.neuroimage.2008.05.046 CrossRefGoogle Scholar
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147177. http://dx.doi.org/10.1037/1082-989X.7.2.147 CrossRefGoogle ScholarPubMed
Scott, S. G., & Bruce, R. A. (1995). Decision-making style: The development and assessment of a new measure. Educational and Psychological Measurement, 55, 818831. http://dx.doi.org/10.1177/0013164495055005017 CrossRefGoogle Scholar
Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Starcke, K., Wolf, O. T., Markowitsch, H. J., & Brand, M. (2008). Anticipatory stress influences decision making under explicit risk conditions. Behavioral Neuroscience, 122, 13521360. http://dx.doi.org/10.1037/a0013281 CrossRefGoogle ScholarPubMed
Starcke, K., & Brand, M. (2012). Decision making under stress: A selective review. Neuroscience and Biobehavioral Reviews, 36, 12281248. http://dx.doi.org/10.1016/j.neubiorev.2012.02.003 CrossRefGoogle ScholarPubMed
Strahler, J., & Ziegert, T. (2015). Psychobiological stress response to a simulated school shooting in police officers. Psychoneuroendocrinology, 51, 8091. http://dx.doi.org/10.1016/j.psyneuen.2014.09.016 CrossRefGoogle ScholarPubMed
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability. Standards of measurement, physiological interpretation and clinical use. Circulation, 93, 10431065. http://dx.doi.org/10.1161/01.CIR.93.5.1043 CrossRefGoogle Scholar
Traustadóttir, T., Bosch, P. R., & Matt, K. S. (2003). Gender differences in cardiovascular and HPA axis responses to psychological stress in healthy older adult men and women. Stress: The International Journal on the Biology of Stress, 6, 133140. http://dx.doi.org/10.1080/1025389031000111302 CrossRefGoogle ScholarPubMed
van den Bos, R., Hartefeld, M., & Stoop, H. (2009). Stress and decision making in humans: Performance is related to cortisol reactivity, albeit differently in men and women. Psychoneuroendocrinology 34, 14491458. http://dx.doi.org/10.1016/j.psyneuen.2009.04.016 CrossRefGoogle ScholarPubMed
van den Bos, R., Taris, R., Scheppink, B., de Haan, L., & Verster, J. C. (2014). Salivary cortisol and alpha-amylase levels during an assessment procedure correlate differently with risk-taking measures in male and female police recruits. Frontiers in Behavioral Neuroscience, 7, 219. http://dx.doi.org/10.3389/fnbeh.2013.00219 CrossRefGoogle ScholarPubMed
Wise, R. J., Phung, A. L., Labuschagne, I., & Stout, J. C. (2015). Differential effects of social stress on laboratory-based decision-making are related to both impulsive personality traits and gender. Cognition and Emotion, 29, 14751485. http://dx.doi.org/10.1080/02699931.2014.989815 CrossRefGoogle ScholarPubMed