Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T10:04:52.215Z Has data issue: false hasContentIssue false

Does the Wisconsin Card Sorting Test Measure Prefontral Function?

Published online by Cambridge University Press:  10 April 2014

Francisco Barceló*
Affiliation:
Complutense University of Madrid
*
Correspondence concerning this article should be addressed to: Francisco Barceló, Facultad de Psicología.Universidad de las Islas Baleares. Crta. Valldemossa, km 7,5. 07071 Palma de Mallorca (Spain). Fax: 34 971 17 31 90. E-mail: [email protected]

Abstract

This review describes a research program aimed at evaluating the validity and specificity of the Wisconsin Card Sorting Test (WCST), one of the most widely used tests of prefrontal function in clinical and experimental neuropsychology. In spite of its extensive use, voices of caution have arisen against the use of WCST scores as direct markers of prefrontal damage or dysfunction. Adopting a cognitive neuroscience approach, the present research program integrates behavioral, physiological, and anatomical information to investigate the cognitive and neural mechanisms behind WCST performance. The results show that WCST performance evokes conspicuous physiological changes over frontal as well as posterior brain regions. Moreover, WCST scores confound very heterogeneous cognitive and neural processes. This confounding effect may have led many authors to overlook the relative importance of certain dysfunctional states such as those indexed by random errors. These findings strongly suggest that WCST scores cannot be regarded as valid nor specific markers of prefrontal lobe function. However, they do provide some relevant clues to update our current knowledge about prefrontal function. In the long run, the integrative approach of cognitive neuroscience may help us design and develop more valid and sensitive tools for neuropsychological assessment.

En esta revisión se describe un programa de investigación dirigido a evaluar la validez y especificidad del Test de Clasificación de Cartas de Wisconsin (WCST), uno de los más empleados para evaluar la función prefrontal en neuropsicología clínica y experimental. A pesar de su amplio uso, han surgido voces críticas en contra de la interpretación de las puntuaciones del WCST como indicadores directos del daño o la disfunción prefrontal. Desde la perspectiva de la neurociencia cognitiva, el presente programa de investigación integra información conductual, fisiológica y anatómica para indagar los mecanismos cognitivos y neuronales subyacentes a la realización del WCST. Los resultados muestran que la ejecución del WCST va asociada a importantes cambios fisiológicos en áreas frontales y posteriores. Además, las puntuaciones del WCST mezclan procesos cognitivos y neuronales muy heterogéneos. Esta confusión puede haber inducido a muchos autores a pasar por alto la importancia relativa de ciertos estados anómalos como los asociados a los errores aleatorios. Estos hallazgos sugieren que las puntuaciones WCST no pueden ser consideradas como marcadores válidos ni específicos de disfunción prefrontal, aunque sí proporcionan claves para actualizar nuestro conocimiento actual sobre la función prefrontal. En un futuro, el análisis integrador de la neurociencia cognitiva puede ayudar a diseñar y desarrollar instrumentos de evaluación neuropsicológica más válidos y sensibles.

Type
Spanish research trends
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, M., Bellodi, L., Ferri, S., & Scarone, S. (1995). Frontal lobe dysfunction in schizophrenia and obsessive-compulsive disorder: A neuropsychological study. Brain and Cognition, 27, 202212.CrossRefGoogle ScholarPubMed
Allport, A., Styles, E.A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In Umiltà, C. & Moscovitch, M. (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 421452). Cambridge, MA: MIT Press.Google Scholar
Anderson, S.W., Damasio, H., Jones, R.D., & Tranel, D. (1991). Wisconsin Card Sorting Test performance as a measure of frontal lobe damage. Journal of Clinical and Experimental Neuropsychology, 13, 909922.CrossRefGoogle ScholarPubMed
Baddeley, A., & Della Sala, S. (1998). Working memory and executive control. In Roberts, A.C., Robbins, T.W., & Weiskrantz, L. (Eds.), The prefrontal cortex. Executive and cognitive functions (pp. 921). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Barceló, F. (1999). Electrophysiological evidence of two different types of error in the Wisconsin Card Sorting Test. Neuroreport, 10, 12991303.CrossRefGoogle ScholarPubMed
Barceló, F., & Gale, A. (1997). Electrophysiological measures of cognition in biological psychiatry: Some cautionary notes. International Journal of Neuroscience, 92, 219240.CrossRefGoogle ScholarPubMed
Barceló, F., & Knight, R. T. (in press). Both random and perseverative errors underlie WCST deficits in prefrontal patients. Neuropsychologia.Google Scholar
Barceló, F., Muñoz-Céspedes, J.M., Pozo, M.A., & Rubia, F.J. (2000). Attentional set-shifting modulates the target P3b response in the Wisconsin Card Sorting Test. Neuropsychologia, 38, 13421355.CrossRefGoogle ScholarPubMed
Barceló, F., & Rubia, F.J. (1998). Nonfrontal P3b-like activity evoked by the Wisconsin Card Sorting Test. Neuroreport, 9, 747751.CrossRefGoogle ScholarPubMed
Barceló, F., & Santomé, A. (2000). Revisión crítica del test de clasificación de cartas de Wisconsin como indicador de disfunción prefrontal. Revista de Neurología, 30, 855864.CrossRefGoogle ScholarPubMed
Barceló, F., Sanz, M., Molina, V., & Rubia, F. J. (1997). The Wisconsin Card Sorting Test and the assessment of frontal function: A validation study with event-related potentials. Neuropsychologia, 35, 399408.CrossRefGoogle ScholarPubMed
Barceló, F., Suwazono, S., & Knight, R.T. (2000). Prefrontal modulation of visual processing in humans. Nature Neuroscience, 3, 399403.CrossRefGoogle ScholarPubMed
Berman, K.F., Ostrem, J.L., Randolph, C., Gold, J., Goldberg, T.E., Coppola, R., Carson, R.E., Herscovitch, P., & Weinberger, D.R. (1995). Physiological activation of a cortical network during performance of the Wisconsin Card Sorting Test: A positron emission tomography study. Neuropsychologia, 33, 10271046.CrossRefGoogle ScholarPubMed
Bowden, S.C., Fowler, K.S., Bell, R.C., Whelan, G., Clifford, C.C., Ritter, A.J., & Long, C.M. (1998). The reliability and internal validity of the Wisconsin Card Sorting Test. Neuropsychological Rehabilitation, 8, 243254.CrossRefGoogle Scholar
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523547.CrossRefGoogle ScholarPubMed
Dehaene, S., & Changeux, J.P. (1991). The Wisconsin Card Sorting Test: Theoretical analysis and modeling in a neuronal network. Cerebral Cortex, 1, 6279.CrossRefGoogle Scholar
Delis, D.C., Squire, L.R., Bihrle, A., & Massman, P. (1992). Componential analysis of problem-solving ability: Performance of patients with frontal lobe damage and amnesic patients on a new sorting test. Neuropsychologia, 30, 683697.CrossRefGoogle ScholarPubMed
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193222.CrossRefGoogle ScholarPubMed
D'Esposito, M., Detre, J.A., Alsop, D.C., Shin, R.K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378, 279281.CrossRefGoogle ScholarPubMed
D'Esposito, M., Zarahn, E., & Aguirre, G.K. (1999). Event-related functional MRI: Implications for cognitive psychology. Psychological Bulletin, 125, 155164.CrossRefGoogle ScholarPubMed
Dias, R., Robbins, T.W., & Roberts, A.C. (1997). Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: Restriction to novel situations and independence from on-line processing. Journal of Neuroscience, 17, 92859297.CrossRefGoogle ScholarPubMed
Donchin, E., & Coles, M.G.H. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 343356.CrossRefGoogle Scholar
Duncan, J., Humphreys, G., & Ward, R. (1997). Competitive brain activity in visual attention. Current Opinion in Neurobiology, 7, 255261.CrossRefGoogle ScholarPubMed
Ford, J.M. (1999). Schizophrenia: The broken P300 and beyond. Psychophysiology, 36, 667682.CrossRefGoogle ScholarPubMed
Fuster, J.M. (1997). The prefrontal cortex: Anatomy, physiology, and neuropsychology of the frontal lobes. Philadelphia, PA: Lippincott-Raven.Google Scholar
Fuster, J.M., Bauer, R.H., & Jervey, J.P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Research, 330, 299307.CrossRefGoogle Scholar
Gauntlett-Gilbert, J., Roberts, R.C., & Brown, V.J. (1999). Mechanisms underlying attentional set-shifting in Parkinson's disease. Neuropsychologia, 37, 605–16.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P.S. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137156.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P.S. (1999). The “psychic” neuron of the cerebral cortex. Annals of the New York Academy of Sciences, 868, 1326.Google Scholar
Grant, D.A., & Berg, E.A. (1948). A behavioural analysis of degree of reinforcement and ease of shifting to new responses in a Weigl-type card-sorting problem. Journal of Experimental Psychology, 38, 404411.CrossRefGoogle Scholar
Greeve, K.W. (1993). Can perseverative responses on the Wisconsin Card Sorting Test be scored accurately? Archives of Clinical Neuropsychology, 8, 511517.Google Scholar
Halgren, E., Baudena, P., Clarke, J.M., Heit, G., Liégeois, C., Chauvel, P., & Musolino, A. (1995). Intracerebral potentials to rare target and distractor auditory and visual stimuli: I. Superior temporal plane and parietal lobe. Electroencephalography and Clinical Neurophysiology, 94, 191220.CrossRefGoogle ScholarPubMed
Halgren, E., Baudena, P., Clarke, J.M., Heit, G., Marinkovic, K., Devaux, B., Vignal, J., & Biraben, A. (1995). Intracerebral potentials to rate target and distractor auditory and visual stimuli: II. Medial lateral and posterior temporal lobe. Electroencephalography and Clinical Neurophysiology, 94, 229250.CrossRefGoogle Scholar
Harris, M.E. (1990). Wisconsin Card Sorting Test: Computer version, research edition. Odessa, FL: Psychological Assessment Resources.Google Scholar
Hayes, A.E., Davidson, M.C., Keele, S.W., & Rafal, R.D. (1998). Toward a functional analysis of the basal ganglia. Journal of Cognitive Neuroscience, 10, 178198.CrossRefGoogle Scholar
Heaton, R.K. (1981). The Wisconsin Card Sorting Test Manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heaton, R.K., Chelune, G.J., Talley, J.L., Kay, G.G., & Curtis, G. (1993). Wisconsin Card Sorting Test (WCST). Manual Revised and Expanded. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heit, G., Smith, M.E., & Halgren, E. (1990). Neuronal activity in the human medial temporal lobe during recognition memory. Brain, 113, 10931112.CrossRefGoogle ScholarPubMed
Kawasaki, Y., Maeda, Y., Suzuki, M., Urata, K., Higashima, M., Kiba, K., Yamaguchi, N., Matsuda, H., & Hisada, K. (1993). SPECT analysis of regional cerebral blood flow changes in patients with schizophrenia during the Wisconsin Card Sorting Test. Schizophrenia Research, 10, 109116.CrossRefGoogle ScholarPubMed
Keele, S.W., & Rafal, R. (2000). Deficits of attentional set in frontal patients. In Monsell, S. & Driver, J. (Eds.), Control of cognitive operations: Attention and performance XVIII (pp. 627652). Cambridge, MA: MIT Press.Google Scholar
Kempton, S., Vance, A., Maruff, P., Luk, E., Costin, J., & Pantelis, C. (1999). Executive function and attention deficit hyperactivity disorder: Stimulant medication and better executive function performance in children. Psychological Medicine, 29, 527–38.CrossRefGoogle ScholarPubMed
Kimberg, D.Y., D'Esposito, M., & Farah, M.J. (1997). Frontal lobes: Neuropsychological aspects. In Feinberg, T.E. & Farah, M.J. (Eds.), Behavioral neurology and neuropsychology (pp. 409418). New York: McGraw Hill.Google Scholar
Knight, R.T. (1997a). A distributed cortical network for visual attention. Journal of Cognitive Neuroscience, 9, 7591.CrossRefGoogle Scholar
Knight, R.T. (1997b). Electrophysiological methods in behavioral neurology and neuropsychology. In Feinberg, T.E. & Farah, M.J. (Eds.), Behavioral neurology and neuropsychology (pp. 101119). New York: McGraw-Hill.Google Scholar
Knight, R.T., & Grabowecky, M. (2000). Prefrontal cortex, time and consciousness. In Gazzaniga, M.S. (Ed.), The new cognitive neurosciences (pp. 13191339). Cambridge, MA: MIT Press.Google Scholar
Knight, R.T., Grabowecky, M.F., & Scabini, D. (1995). Role of human prefrontal cortex in attention control. In Jasper, H.H., Goldman-Rakic, R.S., & Goldman-Rakic, P.S. (Eds.), Epilepsy and the functional anatomy of the frontal lobe (pp. 2136). New York: Raven Press.Google Scholar
Knight, R.T., & Scabini, D. (1998). Anatomic bases of event-related potentials and their relationship to novelty detection in humans. Journal of Clinical Neurophysiology, 15, 313.CrossRefGoogle ScholarPubMed
Kolb, B., & Whishaw, I.Q. (1996). Fundamentals of human neuropsychology (4th ed.). New York: W.H. Freeman.Google Scholar
Konishi, S., Kawazu, M., Uchida, I., Kikyo, H., Asakura, I., & Miyashita, Y. (1999). Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cerebral Cortex, 9, 745–53.CrossRefGoogle ScholarPubMed
Konishi, S., Nakajima, K., Uchida, I., Kameyama, M., Nakahara, K., Sekihara, K., & Miyashita, Y. (1998). Transient activation of inferior prefrontal cortex during cognitive set-shifting. Nature Neuroscience, 1, 8084.CrossRefGoogle ScholarPubMed
Lenzenweger, M.F., & Korfine, L. (1994). Perceptual aberrations schizotypy and the Wisconsin Card Sorting Test. Schizophrenia Bulletin, 20, 345357.CrossRefGoogle ScholarPubMed
Lezak, M.D. (1995). Neuropsychological assessment. New York: Oxford University Press.Google Scholar
Marenco, S., Coppola, R., Daniel, D.G., Zigun, J. R., & Weinberger, D.R. (1993). Regional cerebral blood flow during the Wisconsin Card Sorting Test in normal participants studied by xenon-133 dynamic SPECT: Comparison of absolute values percent distribution values and covariance analysis. Psychiatry Research: Neuroimaging, 50, 177192.CrossRefGoogle Scholar
Mattay, V.S., Berman, K.F., Ostrem, J.L., Esposito, G., van Horn, J.D., Bigelow, L.B., & Weinberger, D.R. (1996). Dextroamphetamine enhances neural network-specific physiological signals: A positron-emission tomography rCBF study. Journal of Neuroscience, 16, 48164822.CrossRefGoogle ScholarPubMed
Mattes, R., Cohen, R., Berg, P., Canavan, A.G.M., & Hopmann, G. (1991). Slow potentials (SCPS) in schizophrenic patients during performance of the Wisconsin Card-Sorting Test (WCST). Neuropsychologia, 29, 195205.CrossRefGoogle ScholarPubMed
Mazziotta, J.C. (1996). Time and space. In Toga, A.W. & Mazziotta, J.C. (Eds.), Brain mapping: The methods (pp. 389406). London: Academic Press.Google Scholar
Mentzel, H.J., Gaser, C., Volz, H.P., Rzanny, R., Hager, F., Sauer, H., & Kaiser, W.A. (1998). Cognitive stimulation with the Wisconsin Card Sorting Test: Functional MR imaging at 1.5 T. Radiology, 207, 399404.CrossRefGoogle ScholarPubMed
Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 100110.CrossRefGoogle Scholar
Mountain, M.A., & Snow, W.G. (1993). Wisconsin Card Sorting Test as a measure of frontal pathology: A review. The Clinical Neuropsychologist, 7, 108118.CrossRefGoogle Scholar
Nagahama, Y., Fukuyama, H., Yamauchi, H., Katsumi, Y., Magata, Y., Shibasaki, H., & Kimura, J. (1997). Age-related changes in cerebral blood flow activation during a card sorting test. Experimental Brain Research, 114, 571577.CrossRefGoogle ScholarPubMed
Nagahama, Y., Fukuyama, H., Yamauchi, H., Matsuzaki, S., Konishi, J., Shibasaki, H., & Kimura, J. (1996). Cerebral activation during performance of a card sorting test. Brain, 119, 16671675.CrossRefGoogle ScholarPubMed
Nagahama, Y., Sadato, N., Yamauchi, H., Katsumi, Y., Hayashi, T., Fukuyama, H., Kimura, J., Shibasaki, H., & Yonekura, Y. (1998). Neural activity during attention shifts between object features. NeuroReport, 9, 26332638.CrossRefGoogle ScholarPubMed
Nelson, H.E. (1976). A modified card sorting test sensitive to frontal lobe defects. Cortex, 12, 313324.CrossRefGoogle ScholarPubMed
Owen, A.M., Morris, R.G., Sahakian, B.J., Polkey, C.E., & Robbins, T.W. (1996). Double dissociations of memory and executive functions in working memory tasks following frontal lobe excisions temporal lobe excisions or amygdalo-hippocampectomy in man. Brain, 119, 15971615.CrossRefGoogle ScholarPubMed
Owen, A.M., Roberts, A.C., Hodges, J.R., Summers, B.A., Polkey, C.E., & Robbins, T.W. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain, 116, 11591175.CrossRefGoogle ScholarPubMed
Parellada, E., Catafau, A.M., Bernardo, M., Lomena, F., Catarineu, S., & Gonzalez-Monclus, E. (1998). The resting and activation issue of hypofrontality: A single photon emission computed tomography study in neuroleptic-naive and neuroleptic-free schizophrenic female patients. Biological Psychiatry, 44, 787790.CrossRefGoogle ScholarPubMed
Parks, R.W., Levine, D.S., Long, D.L., Crockett, D.J., Dalton, I.E., Weingartner, H., Fedio, P., Coburn, K.L., Matthews, J.R., & Becker, R.E. (1992). Parallel distributed processing and neuropsychology: A neural network model of Wisconsin card sorting and verbal fluency. Neuropsychological Review, 3, 213233.CrossRefGoogle ScholarPubMed
Posner, M.I., & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17, 7579.CrossRefGoogle ScholarPubMed
Rabbitt, P. (1997). Introduction: Methodologies and models in the study of executive function. In Rabbitt, P. (Ed.), Methodology of frontal and executive function (pp. 138). Hove, UK: Psychology Press.Google Scholar
Ragland, J.D., Gur, R.C., Glahn, D.C., Censits, D.M., Smith, R.J., Lazarev, M.G., Alavi, A., & Gur, R.E. (1998). Frontotemporal cerebral blood flow change during executive and declarative memory tasks in schizophrenia: A positron emission tomography study. Neuropsychology, 12, 399413.CrossRefGoogle ScholarPubMed
Reitan, R.M., & Wolfson, D. (1994). A selective and critical review of neuropsychological deficits and the frontal lobes. Neuropsychology Review, 4, 161198.CrossRefGoogle ScholarPubMed
Robbins, T.W. (1998a). Arousal and attention: Psychopharmacological and neuropsychological studies in experimental animals. In Parasuraman, R. (Ed.), The attentive brain (pp. 189220). Cambridge, MA: MIT Press.Google Scholar
Robbins, T.W. (1998b). Dissociating executive functions of the prefrontal cortex. In Roberts, A.C., Robbins, T.W., & Weiskrantz, L. (Eds.), The prefrontal cortex. Executive and cognitive functions (pp. 117130). Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Roberts, A.C., De Salvia, M.A., Wilkinson, L.S., Collins, P., Muir, J.L., Everitt, B.J., & Robbins, T.W. (1994). 6-hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sorting Test: Possible interactions with subcortical dopamine. Journal of Neuroscience, 14, 25312544.CrossRefGoogle Scholar
Roberts, A.C., Robbins, T.W., & Everitt, B.J. (1988). The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and nonhuman primates. The Quarterly Journal of Experimental Psychology, 40, 321341.Google Scholar
Rogers, R.D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207231.CrossRefGoogle Scholar
Rogers, R.D., Sahakian, B.J., Hodges, J.R., Polkey, C.E., Kennard, C., & Robbins, T.W. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson's disease. Brain, 121, 815842.CrossRefGoogle ScholarPubMed
Rugg, M.D. (1992). Event-related potentials in clinical neuropsychology. In Crawford, J.R., Parker, D.M., & McKinlay, W.W. (Eds.), A handbook of neuropsychological assessment (pp. 393411). Hillsdale, NJ: Erlbaum.Google Scholar
Rugg, M.D. (1995). Cognitive event-related potentials: intracraneal and lesion studies. In Boller, F. & Grafman, J. (Eds.), Handbook of neuropsychology (Vol. 10, pp. 165185). Amsterdam: Elsevier.Google Scholar
Scherg, M & Berg, P. (1990). BESA – brain electric source analysis handbook. Munich: Max Planck Institute for Psychiatry.Google Scholar
Shallice, T. (1988). From neuropsychology to mental structure. New York: Cambridge University Press.CrossRefGoogle Scholar
Shallice, T. (1994). Multiple levels of control processes. In Umiltà, C. & Moscovitch, M. (Eds.), Attention and performance XV: Conscious and nonconscious information processing (pp. 395420). Cambridge, MA: MIT Press.Google Scholar
Smith, E.E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 16571661.CrossRefGoogle ScholarPubMed
Spreen, O., & Strauss, E. (1998). A compendium of neuropsychological tests. Administration, norms, and commentary. New York: Oxford University Press.Google Scholar
Stuss, D.T., & Benson, D.F. (1986). The frontal lobes. New York: Raven Press.Google Scholar
Tarkka, I.M., Stokic, D.S., Basile, L.F.H., & Papanicolaou, A.C. (1995). Electric source localization of the auditory P300 agrees with magnetic source localization. Electroencephalography and Clinical Neurophysiology, 96, 538545.CrossRefGoogle ScholarPubMed
Tien, A.Y., Schlaepfer, T.E., Orr, W., & Pearlson, G.D. (1998). SPECT brain blood flow changes with continuous ligand infusion during previously learned WCST performance. Psychiatry Research, 82, 4752.CrossRefGoogle ScholarPubMed
Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I., & Miyashita, Y. (1999). Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature, 401, 699703.CrossRefGoogle ScholarPubMed
Volz, H.-P., Gaser, C., Häger, F., Rzanny, R., Mentzel, H.-J., Kreitschmann-Andermahr, I., Kaiser, W.A., & Sauer, H. (1997). Brain activation during cognitive stimulation with the Wisconsin Card Sorting Test: A functional MRI study on healthy volunteers and schizophrenics. Psychiatry Research: Neuroimaging, 75, 145157.CrossRefGoogle Scholar