Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T07:33:11.809Z Has data issue: false hasContentIssue false

The Degree of Abstraction in Solving Addition and Subtraction Problems

Published online by Cambridge University Press:  10 April 2014

Vicente Bermejo*
Affiliation:
Universidad Complutense de Madrid
Juan José Díaz
Affiliation:
Universidad Autónoma de Zacatecas (Mexico)
*
Correspondence concerning this article should be addressed to Vicente Bermejo, Facultad de Psicología, Campus de Somosaguas, Universidad Complutense, 28223 Madrid, Spain. E-mail: [email protected]

Abstract

In this study, the incidence of the degree of abstraction in solving addition and subtraction problems with the unknown in the first term and in the result is analyzed. Ninety-six students from first grade to fourth grade in Primary Education (24 students per grade) solved arithmetic problems with objects, drawings, algorithms, and verbal problems. The participants were interviewed individually and all sessions were video-taped. The results indicate a different developmental pattern in achievement for each school grade depending on the levels of abstraction. The influence of the level of abstraction was significant, especially in first graders, and even more so in second graders, that is, at the developmental stage in which they start to learn these arithmetic tasks. Direct modeling strategies are observed more frequently at the concrete and pictorial level, counting strategies occur at all levels of abstraction, whereas numerical fact strategies are found at higher levels of abstraction.

En este estudio se analiza la incidencia del grado de abstracción en la resolución de problemas de suma y resta con la incógnita en el primer término y en el resultado. Noventa y seis alumnos de primero a cuarto curso de Educación Primaria (24 escolares por curso) resuelven tareas aritméticas con objetos, dibujos, algoritmos y verbales. Los participantes se entrevistaron de manera individual y se registraron en vídeo todas las sesiones. Los resultados indican un patrón evolutivo diferente en el rendimiento para cada curso escolar según los niveles de abstracción. Resulta significativa la influencia del nivel de abstracción sobre todo en primero y más aún en segundo curso, es decir, en el momento evolutivo en que se inicia el aprendizaje de estas tareas aritméticas. Las estrategias modelado directo se manifiestan más en el nivel concreto y pictórico, las estrategias conteo ocurren en todos los niveles de abstracción, mientras que las estrategias hechos numéricos se encuentran en los niveles de mayor abstracción.

Type
Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bebout, H. (1990). Children's symbolic representation of addition and subtraction word problems. Journal for Research in Mathematics Education, 21, 123131.CrossRefGoogle Scholar
Bergeron, J., & Hersovics, N. (1990). Psychological aspects of learning early arithmetic. In Nesher, P. & Kilpatrick, J. (Eds.), Mathematical and cognition (pp. 3152). Cambridge, NY: Cambridge University Press.CrossRefGoogle Scholar
Bermejo, V. (1990). El niño y la aritmética. Madrid: Paidós.Google Scholar
Bermejo, V. (Ed). (2004). Cómo enseñar matemáticas para aprender mejor. Madrid: CCS.Google Scholar
Bermejo, V., Lago, M.O., & Rodríguez, P. (1998). Aprendizaje de la adición y sustracción. Secuenciación de los problemas verbales según su dificultad. Revista de Psicología General y Aplicada, 51, 533552.Google Scholar
Bermejo, V., Lago, M.O., Rodríguez, P., Dopico, C., & Lozano, J.M. (2002). PEI. Un programa de intervención para la mejora del rendimiento matemático. Madrid: Editorial Complutense.Google Scholar
Bruner, J.S. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University Press.Google Scholar
Cai, J. (2000). Mathematical thinking involved in U.S. and Chinese students' solving of process-constrained and process-open problems. Mathematical Thinking and Learning, 2, 309340.CrossRefGoogle Scholar
Canobi, K., Reeve, R., & Pattison, Ph. (2003). Patterns of knowledge in children's addition. Developmental Psychology, 39, 521534.CrossRefGoogle ScholarPubMed
Carpenter, T.P. (1986). Conceptual knowledge as a foundation for procedural knowledge: Implications from research on the initial learning of arithmetic. In Hiebert, J. (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 113132). Hillsdale, NJ: Erlbaum.Google Scholar
Carpenter, T.P., Ansell, E., Franke, M., Fennema, E., & Weisbeck, L. (1993). Models of problem solving: A study of kindergarten children's problem-solving processes. Journal for Research in Mathematics Education, 24, 427440.CrossRefGoogle Scholar
Carpenter, T.P., Hiebert, J., & Moser, J.M. (1981). Problem structure and first-grade children's initial solution processes for simple addition and subtraction problems. Journal for Research in Mathematics Education, 12, 2729.CrossRefGoogle Scholar
Carpenter, T.P., Hiebert, J., & Moser, J.M. (1983). The effect of instruction on children's solutions of addition and subtraction word problems. Educational Studies in Mathematics, 14, 5572.CrossRefGoogle Scholar
Carpenter, T.P., & Moser, J.M. (1982). The development of addition and subtraction problem-solving skills. In Carpenter, T.P., Moser, J.M., & Romberg, T.A. (Eds.), Addition and subtraction: A cognitive perspective (pp. 924). Hillsdale, NJ: Erlbaum.Google Scholar
Carpenter, T.P., & Moser, J.M. (1983). The acquisition of addition and subtraction concepts. In Lesh, R. & Landau, M. (Eds.), Acquisition of mathematics: Concepts and processes (pp. 744). NY: Academic Press.Google Scholar
Carpenter, T.P., & Moser, J.M. (1984). The acquisition of addition and subtraction concepts in grades one through three. Journal for Research in Mathematics Education, 15, 179202.CrossRefGoogle Scholar
Chen, M.H. (1999). Children's solution of arithmetic word problems as a function of number size. Dissertation Abstracts International: Section B: The Sciences and Engineering, 59 (10-B): 5597.Google Scholar
Christou, C., & Philippou, G. (1998). The developmental nature of ability to solve one-step word problems. Journal for Research in Mathematics Education, 29, 436442.CrossRefGoogle Scholar
Cohen, S.A., & Stover, G. (1981). Effects of teaching sixth grade students to modify format variables of math word problems. Reading Research Quarterly, 16, 175200.CrossRefGoogle Scholar
Cummins, D. (1991). Children's interpretations of arithmetic word problems. Cognition and Instruction, 8, 261289.CrossRefGoogle Scholar
De Corte, E., & Verschaffel, L. (1985). Beginning first graders' initial representation of arithmetic word problems. The Journal of Mathematical Behavior, 4, 321.Google Scholar
De Corte, E., & Verschaffel, L. (1987). The effect of semantic structure on first graders' strategies for solving addition and subtraction word problems. Journal for Research in Mathematics Education, 18, 363381.CrossRefGoogle Scholar
De Corte, E., Verschaffel, L., & De Win, L. (1985). Influence of rewording verbal problems on children's problem representations and solutions. Journal of Educational Psychology, 77, 460470.CrossRefGoogle Scholar
Fuson, K.C., & Briars, D.J. (1990). Using a base-ten blocks learning/teaching approach for first and second grade place-value and multidigit addition and subtraction. Journal for Research in Mathematics Education, 21, 108206.CrossRefGoogle Scholar
Fuson, K.C., & Burghardt, B.H. (2003). Multidigit addition and subtraction methods invented in small groups and teacher support of problem solving and reflection. In Baroody, A.J. & Dowker, A. (Eds.), The development of arithmetic concepts and skills: Constructing adaptive expertise. Studies in mathematical thinking and learning. (pp. 267304). Mahwah, NJ: Erlbaum.Google Scholar
Fuson, K.C., Smith, S., & LoCicero, A. (1997). Supporting Latino first graders' ten-structured thinking in urban classrooms. Journal for Research in Mathematics Education, 28, 738766.CrossRefGoogle Scholar
Fuson, K.C., & Willis, G.B. (1989). Second graders' use of schematic drawings in solving addition and subtraction word problems. Journal of Educational Psychology, 81, 514520.CrossRefGoogle Scholar
Ginbayashi, K. (1984). Principles of mathematics education-Achievements of AMI. Tokyo: Association of Mathematical Instruction.Google Scholar
Grouws, D. A. (Ed.). (1992). Handbook of research on mathematics teaching and learning. New York: Macmillan.Google Scholar
Hatano, G. (1980, April). Mental regrouping strategy for addition: An alternative model to counting-on. Paper presented at the National Council of Teachers of Mathematics Research Presession, Seattle, WA.Google Scholar
Hatano, G. (1982). Learning to add and subtract: A Japanese perspective. In Carpenter, T.P., Moser, J.M., & Romberg, T.A. (Eds.), Addition and subtraction: A cognitive perspective (pp. 211223). Hillsdale, NJ: Erlbaum.Google Scholar
Hiebert, J. (1982). The position of unknown set in children's solution of verbal arithmetic problems. Journal for Research in Mathematics Education, 13, 341349.CrossRefGoogle Scholar
Hughes, M. (1986). Children and number: Difficulties in learning mathematics. Oxford, UK: Blackwell.Google Scholar
Kamii, C., Kirkland, L., & Lewis, B.A. (2001). Representation and abstraction in young children's numerical reasoning. In National Council of Teachers of Mathematics (Ed.), The roles of representation in school mathematics (pp. 2434). Yearbook 2001. Reston, VA: Author.Google Scholar
Kamii, C., Lewis, B.A., & Kirkland, L.D. (2001a). Manipulatives: When are they useful? Journal of Mathematical Behavior, 20, 2131.CrossRefGoogle Scholar
Kamii, C., Lewis, B.A., & Kirkland, L.D. (2001b). Fluency in subtraction compared with addition. Journal of Mathematical Behavior, 20, 3342.CrossRefGoogle Scholar
Kato, Y., Kamii, C., Ozaki, K., & Nagahiro, M. (2002). Young children's representations of groups of objects: The relationship between abstraction and representation. Journal for Research in Mathematics Education, 33, 3045.CrossRefGoogle Scholar
Kennedy, L.M., & Tipps, S. (1994). Guiding children's learning of mathematics. Belmont, CA: Wadsworth.Google Scholar
Labinowicz, E. (1985). Learning from students: New beginnings for teaching numerical thinking. Menlo Park, CA: Addison-Wesley.Google Scholar
Larkin, J.H., & Simon, H.A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 19, 65100.CrossRefGoogle Scholar
Lindvall, C.M., Tamburino, J.L., & Robinson, L. (1982, March). An exploratory investigation of the effect of teaching primary grade children to use specific problem solving strategies in solving simple arithmetic story problems. Paper presented at the annual meeting of the American Educational Research Association, New York.Google Scholar
Maccini, P., & Hughes, Ch. (2000). Effects of a problem-solving strategy on the introductory algebra performance of secondary students with learning disabilities. Learning Disabilities Research and Practice, 15, 1021.CrossRefGoogle Scholar
Moyer, J.C., Sowder, L., Threadgill-Sowder, J., & Moyer, M.B. (1984). Story problem formats: Drawn versus verbal versus telegraphic. Journal for Research in Mathematics Education, 15, 342351.CrossRefGoogle Scholar
National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.Google Scholar
Organisation for Economic Co-operation and Development/PISA (2005). Informe Pisa 2003. Aprender para el mundo del mañana. Madrid: Author/Santillana.Google Scholar
Piaget, J. (1951). Play, dreams, and imitation in childhood. New York: Norton.Google Scholar
Piaget, J. (1970). Science of education and the psychology of the child. New York: Orion Press.Google Scholar
Quintero, A.H. (1983). Conceptual understanding in solving two-step word problems with a ratio. Journal for Research in Mathematics Education, 14, 102112.CrossRefGoogle Scholar
Resnick, L., & Omanson, S. F. (1987). Learning to understand arithmetic. In Glaser, R. (Ed.), Advances in instructional psychology (pp. 4195). Hillsdale, NJ: Erlbaum.Google Scholar
Riley, M.S., & Greeno, J.G. (1988). Developmental analysis of understanding language about quantities and of solving problems. Cognition and Instruction, 5, 49101.CrossRefGoogle Scholar
Riley, M.S., Greeno, J.G., & Heller, J.I. (1983). Development of children's problem solving ability in arithmetic. In Ginsburg, H.P. (Ed.), The development of mathematical thinking (pp. 153196). New York: Academic Press.Google Scholar
Selva, A.C., & Brandao, A.C. (2000). A notaçao escrita na resoluçao de problemas por crianças pre-escolares. Psicología: Teoria y Pesquisa, 16, 241249.Google Scholar
Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In Carpenter, T.P., Moser, J.M., & Romberg, T.A. (Eds.), Addition and subtraction: A cognitive perspective (pp. 3959). Hillsdale, NJ: Erlbaum.Google Scholar
Vlahovic-Stetic, V. (1999). Word-problem solving as a function of problem type, situational context and drawing. Studia Psychologica, 41, 4962.Google Scholar
Wearne, D., & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction: Testing a local theory using decimal numbers. Journal for Research in Mathematics Education, 19, 371384.CrossRefGoogle Scholar
Willis, G.B., & Fuson, K.C. (1988). Teaching children to use schematic drawings to solve addition and subtraction word problems. Journal of Educational Psychology, 80, 192201.CrossRefGoogle Scholar
Wolters, M.A.D. (1983). The part-whole schema and arithmetical problems. Educational Studies in Mathematics, 14, 127138.CrossRefGoogle Scholar
Yancey, A.V. (1981). Pupil-generated diagrams as a strategy for solving word problems in elementary mathematics. University of Louisville. (ERIC Document Reproduction Service No. ED 260922).Google Scholar
Zhou, X., & Zhang, M. (2000). Effects of analyzing quantity sets and generating diagrams in relational word problem solving. Psychological Science China, 23, 611618.Google Scholar
Zhou, X., & Zhang, M. (2003). Influence of situation complexity on solving addition and subtraction word problems. Acta Psychologica Sinica, 35, 195200.Google Scholar