Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:12:49.832Z Has data issue: false hasContentIssue false

A Comparative Study on Entrepreneurial Attitudes Modeled with Logistic Regression and Bayes Nets

Published online by Cambridge University Press:  10 January 2013

Jorge López Puga*
Affiliation:
Universidad de Almería (Spain)
Juan García García*
Affiliation:
Universidad de Almería (Spain)
*
Correspondence concerning this article should be addressed to Jorge López Puga or Juan García García. Facultad de Psicología, Universidad de Almería, Ctra. Sacramento S/N, La Cañada de San Urbano, 04120 - Almería (Spain). E-mails: [email protected] & [email protected]
Correspondence concerning this article should be addressed to Jorge López Puga or Juan García García. Facultad de Psicología, Universidad de Almería, Ctra. Sacramento S/N, La Cañada de San Urbano, 04120 - Almería (Spain). E-mails: [email protected] & [email protected]

Abstract

Entrepreneurship research is receiving increasing attention in our context, as entrepreneurs are key social agents involved in economic development. We compare the success of the dichotomic logistic regression model and the Bayes simple classifier to predict entrepreneurship, after manipulating the percentage of missing data and the level of categorization in predictors. A sample of undergraduate university students (N = 1230) completed five scales (motivation, attitude towards business creation, obstacles, deficiencies, and training needs) and we found that each of them predicted different aspects of the tendency to business creation. Additionally, our results show that the receiver operating characteristic (ROC) curve is affected by the rate of missing data in both techniques, but logistic regression seems to be more vulnerable when faced with missing data, whereas Bayes nets underperform slightly when categorization has been manipulated. Our study sheds light on the potential entrepreneur profile and we propose to use Bayesian networks as an additional alternative to overcome the weaknesses of logistic regression when missing data are present in applied research.

El estudio de las actitudes emprendedoras está cobrando especial interés en nuestro contexto dada la trascendencia que tienen los emprendedores como agentes sociales dinamizadores del desarrollo económico. Hemos comparado la regresión logística binaria y el clasificador simple de Bayes en su habilidad para predecir la tendencia emprendedora manipulando número de casos perdidos y el nivel de categorización de los predictores del modelo. Una muestra de estudiantes universitarios (N = 1230) respondió a cinco escalas (motivación, actitud emprendedora, obstáculos, carencias y preparación percibida) y se observó que cada una de estas escalas predecía diferentes dimensiones de la tendencia a crear empresas. Por otro lado, la categorización de los predictores beneficia ligeramente a la regresión logística mientras que la presencia de casos perdidos lo hace sobre las redes bayesianas en términos del área bajo una curva ROC. Nuestros resultados arrojan luz sobre las características del emprendedor potencial y proponemos que las redes bayesianas se consideren como otra alternativa más, junto a las ya existentes, para superar las debilidades derivadas de la presencia de casos perdidos en situaciones aplicadas.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood, NJ: Prentice-Hall.Google Scholar
Altman, D. G., Lausen, B., Sauerbrei, W., & Schumacher, M. (1994). Dangers of using “optimal” cutpoints in the evaluation of prognostic factors. Journal of the National Cancer Institute, 86, 829835. http://dx.doi.org/10.1093/jnci/86.11.829Google Scholar
Ankarali, H., Canan, A., Akkus, Z., Bugdayci, R., & Ali, M. (2007). Comparison of logistic regression model and classification tree: An application to postpartum depression data. Expert Systems with Applications, 32, 987994.Google Scholar
Bartfay, E., Mackillop, W. J., & Pater, J. L. (2006). Comparing the predictive value of neural network models to logistic regression models on the risk of death for small-cell lung cancer patients. European Journal of Cancer Care, 15, 115124. http://dx.doi.org/10.1111/j.1365-2354.2005.00638.xGoogle Scholar
Bird, B. (1988). Implementing entrepreneurial ideas: The case for intention. Academy of Management Review, 13, 442453. http://dx.doi.org/10.5465/AMR.1988.4306970CrossRefGoogle Scholar
Brehm, S. S., Kassin, S., & Fein, S. (2005). Social psychology (6th Ed.). New York, NY: Houghton Mifflin.Google Scholar
Bull, S. B., Mak, C., & Greenwood, C. M. T. (2002). A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics and DataAnalysis, 39, 5774. http://dx.doi.org/10.1016/S0167-9473(01)00048-2Google Scholar
Cano, C. J., García, J., & Gea, A. B. (2003). Actitudes emprendedoras & creación de empresas en los estudiantes universitarios. [Entrepreneurial attitudes and business creation in university students] Almería, Spain: Servicio de Publicaciones de la Universidad de Almería / Consejo Social de la Universidad de Almería.Google Scholar
Chuang, H. L. (1997). High school youths' dropout and re-enrollment behavior. Economics of Education Review, 16, 171186. http://dx.doi.org/10.1016/S0272-7757(96)00058-1Google Scholar
Conati, C., Gertner, A., & VanLehn, K. (2002). Using Bayesian networks to manage uncertainty in student modeling. Modeling and User-Adapted Interaction, 12, 371417.CrossRefGoogle Scholar
Concato, J., Peduzzi, P., Holford, T. R., & Feinstein, A. R. (1995). Importance of events per independent variable in proportional hazards analysis. I. Background, goals, and general strategy. Journal of Clinical Epidemiology, 48, 14951501. http://dx.doi.org/10.1016/0895-4356(95)00510-2CrossRefGoogle ScholarPubMed
Conejo, R., Guzmán, E., Millán, E., Trella, M., Perez-de-la-Cruz, J. L., & Ríos, A. (2004). SIETTE: A web-based tool for adaptive testing. International Journal of Artificial Intelligence in Education, 14, 133.Google Scholar
Conejo, R., Millán, E., Perez de la Cruz, J. L., & Trella, M. (2001). Modelado del alumno: Un enfoque bayesiano. [Modeling students: A Bayesian approach]. Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial, 12, 5058.Google Scholar
Corman, J., Lussier, R., & Nolan, K. G. (1996). Factors that encourage entrepreneurial start-ups and existing firm expansion: A longitudinal study comparing recession and expansion periods. Academy of Entrepreneurship Journal, 1, 4355.Google Scholar
Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic networks and expert systems. Harrisonburg, VA: Springer.Google Scholar
Cusmille, F., & Bangdiwala, S. I. (2000). Categorización de variables en el análisis estadístico de datos: consecuencias sobre la interpretación de resultados. [Categorizing variables in the statistical analysis of data: Consequences for interpreting the results]. Revista Panamericana de Salud Pública, 8, 348354.Google Scholar
Deaux, K., Dane, C. F., & Wrightsman, L. S. (1993). Social psychology in the 90s (6th Ed.). Pacific Grove, CA: Brooks/Cole.Google Scholar
DeMaris, A. (2002). Explained variance in logistic regression. A Monte Carlo study of proposed measures. Sociological Methods & Research, 31, 2774. http://dx.doi.org/10.1177/0049124102031001002CrossRefGoogle Scholar
Díaz, J. C. (2003). La creación de empresas en Extremadura. Un análisis institucional. [Business creation in Extremadura. An institutional analysis]. (Unpublished doctoral dissertation) Universidad de Extremadura, Spain.Google Scholar
Domingos, P., & Pazzni, M. (1996). Beyond independence: Conditions for the optimality of the simple Bayesian classifier. In Saitta, L. (Ed.), Proceedings of the 13th International Conference on Machine Learning (pp. 105112). Bari, Italy: Morgan Kaufman.Google Scholar
Dreisler, P., Blenker, P., & Nielsen, K. (2003). Promoting entrepreneurship – changing attitudes or behavior? Journal of Small Business and Enterprise Development, 10, 383392. http://dx.doi.org/10.1108/14626000310504693CrossRefGoogle Scholar
Eftekhar, B., Mohammad, K., Ardebili, H. E., Ghodsi, M., & Ketabchi, E. (2005). Comparison of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data. BMC Medical Informatics and Decision Making, 5(3), 18.Google Scholar
Feldman, R. S. (1998). Social psychology (2nd Ed.). Upper Saddle River, NJ: Prentice Hall.Google Scholar
Finch, H., & Schneider, M. K. (2007). Classification accuracy of neural networks vs. discriminant analysis, logistic regression, and classification and regression trees. Methodology, 3, 4757. http://dx.doi.org/10.1027/1614-2241.3.2.47Google Scholar
Fini, R., Grimaldi, R., Marzocchi, G. L., & Sobrero, M. (2012). The determinants of corporate entrepreneurial intention within small and newly established firms. Entrepreneurship Theory and Practise, 36, 387414. http://dx.doi.org/10.1111/j.1540-6520.2010.00411.xGoogle Scholar
Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 2738. http://dx.doi.org/10.2307/2336755Google Scholar
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.Google Scholar
Flegal, K. M., Keyl, P. M., & Nieto, F. J. (1991). Differential misclassification arising from nondifferential errors in exposure measurement. American Journal of Epidemiology, 134, 12331244.CrossRefGoogle ScholarPubMed
Franzoi, S. L. (2005). Social psychology (4th Ed.). New York, NY: McGraw Hill.Google Scholar
Fuller-Love, N. (2006). Management development in small firms. International Journal of Management Reviews, 8(3), 175190. http://dx.doi.org/10.1111/j.1468-2370.2006.00125.xGoogle Scholar
Fung, K. Y., & Howe, G. R. (1984). Methodological issues in case-control studies III: The effect of joint misclassification of risk factors and confounding factors upon estimation and power. International Journal of Epidemiology, 13, 366370. http://dx.doi.org/10.1093/ije/13.3.366CrossRefGoogle ScholarPubMed
García, J., Cano, C. J., & Gea, A. B. (2005). Actitudes emprendedoras en estudiantes universitarios y empresarios. Evidencias de validez de un instrumento [Entrepreneurial attitudes in students and business people. Evidence of the validity of an instrument]. Iberpsicología, 10(8), art. 12.Google Scholar
García, J., López, J., Cano, C. J., Gea, A. B., & De la Fuente, E. I. (2006, September). Aplicación de las redes bayesianas al modelado de las actitudes emprendedoras. [Appling Bayesian networks to model entrepreneurial attitudes]. Communication presented at the IV Congress of Methodology of Surveys. Pamplona, Spain.Google Scholar
García, J., López, J., De la Fuente, L., Cano, C. J., & Gea, A. B. (2007, February). Modelos de ecuaciones estructurales & redes bayesianas. Una perspectiva confirmatoria aplicada a las actitudes emprendedoras [Structural equation models and Bayesian networks. A confirmatory perspective applied to entrepreneurial attitudes]. Communication presented at the X Congress of Methodology of Social and Health Sciences. Barcelona, Spain.Google Scholar
Gartner, W. B. (1985). A conceptual framework for describing the phenomenon of new venture creation. Academy of Management Review, 10, 696706. http://dx.doi.org/10.2307/258039Google Scholar
Gartner, W. B. (1988). “Who is an entrepreneur?” is the wrong question. American Journal of Small Business, 12(4), 1132.Google Scholar
Genescá, E., & Capelleras, J. L. (2004). Un análisis comparativo de las características de las microempresas en España [A comparative study of small businesses in Spain]. Universia Business Review, 2, 7293.Google Scholar
Genesca, E., & Veciana, J. M. (1984). Actitudes hacia la creación de empresas [Attitudes towards business creation]. Información Comercial Española, 611, 147155.Google Scholar
Glymour, C. (2001). The mind's arrows. Bayes nets and graphical causal models in psychology. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Glymour, C. (2003). Learning, prediction and causal Bayes nets. Trends in Cognitive Sciences, 7, 4348. http://dx.doi.org/10.1016/S1364-6613(02)00009-8Google Scholar
Gómez, J. M., Mira, I., & Martínez, J. (2007). Condicionantes de la actividad emprendedora e instituciones de apoyo desde el ámbito local: El caso de la provincia de Alicante [Conditioners of the enterprising activity and institutions of support from the local sphere: The case of the province of Alicante]. Revista de Empresa, 20, 2031.Google Scholar
Gopnik, A., & Schulz, L. (2004). Mechanisms of theory formation in young children. Trends in Cognitive Sciences, 8, 371377. http://dx.doi.org/10.1016/j.tics.2004.06.005Google Scholar
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 332. http://dx.doi.org/10.1037/0033-295X.111.1.3Google Scholar
Gopnik, A., Sobel, D. M., Schulz, L., & Glymour, C. (2001). Causal learning mechanisms in very young children: Two, three, and four-years-olds infer causal relations from patterns of variation and covariation. Developmental Psychology, 37, 620629. http://dx.doi.org/10.1037//0012-1649.37.5.620Google Scholar
Gottfredson, L. S. (1998). The general intelligence factor. Scientific American Presents, 9(4), 2429.Google Scholar
Greiner, R., & Zhou, W. (2002). Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Proceedings of the Eighteenth Annual National Conference on Artificial Intelligence, Aug, 2002, 167173.Google Scholar
Greiner, R., Su, X., Shen, B., & Zhou, W. (2005). Structural extension to logistic regression: Discriminative parameter learning of belief net classifiers. Machine Learning, 59, 297322. http://dx.doi.org/10.1007/s10994-005-0469-0Google Scholar
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis. Englewood Cliffs, NY: Prentice Hall.Google Scholar
Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 2936.Google Scholar
Hanley, J. A., & McNeil, B. J. (1983). A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology, 148, 839843.CrossRefGoogle ScholarPubMed
Harrel, F. E., Lee, K. E., Matchar, D. B., & Reichert, T. A. (1985). Regression models for prognostic prediction: Advantages, problems, and suggested solutions. Cancer Treatment Reports, 69, 10711077.Google Scholar
Harris, M. L. & Gibson, S. G. (2008). Examining the entrepreneurial attitudes of US business students. Education and Training, 50, 568581. http://dx.doi.org/10.1108/00400910810909036Google Scholar
Hay Group, & SAP AG. (2003). Factbook, recursos humanos. [Factbook, human resources]. Navarra, Spain: Aranzadi.Google Scholar
Hayek, F. A. (1985). Richard Cantillon. The Journal of Libertarian Studies, 7, 217247.Google Scholar
Hébert, R. F., & Link, A. (1989). In search of the meaning of entrepreneurship. Small Business Economics, 1, 3949. http://dx.doi.org/10.1007/BF00389915CrossRefGoogle Scholar
Heckerman, D. (1995). A tutorial on learning with Bayesian networks (Technical Report S-TR-95-06). Redmon, WA: Microsoft Research.Google Scholar
Hirji, K. F., Mehta, C. R., & Patel, N. R. (1987). Computing distributions for exact logistic regression. Journal of theAmerican Statistical Association, 82, 11101117. http://dx.doi.org/10.2307/2289388CrossRefGoogle Scholar
Hsieh, F. Y. (1989). Sample size tables for logistic regression. Statistics in Medicine, 8, 795802. http://dx.doi.org/10.1002/sim.4780080704CrossRefGoogle ScholarPubMed
Hsieh, F. Y., Bloch, D. A., & Larsen, M. D. (1998). A simple method of sample size calculation for linear and logistic regression. Statistics in Medicine, 17, 16231634.Google Scholar
Huefner, J. C., Hunt, H. K., & Robinson, P. B. (1996). A comparison of four scales predicting entrepreneurship. Academy of Entrepreneurship Journal, 1, 5680.Google Scholar
Irala, J., Fernández-Crehuet, R., & Serrano, A. (1997). Intervalos de confianza anormalmente amplios en regresión logística: Interpretación de resultados de programas estadísticos [Abnormally broad confidence intervals in logistic regression: Interpretation of results of statistical programs]. Revista Panamericana de Salud Pública, 1, 230234.Google Scholar
Jaimes, F., Farbiarz, J., Alvarez, D., & Martínez, C. (2005). Comparison between logistic regression and neural networks to predict death in patients with suspected sepsis in the emergency room. Critical Care, 9, 150156.Google Scholar
Jovel, A. J. (1995). Análisis de regresión logística [Logistic regression analysis]. Madrid, Spain: Centro de Investigaciones Sociológicas.Google Scholar
Jurafsky, D. (1996). A probabilistic model of lexical and syntactic access and disambiguation. Cognitive Science, 20, 137194. http://dx.doi.org/10.1016/S0364-0213(99)80005-6Google Scholar
Kadie, C. M., Hovel, D., & Horvitz, E. (2001). MSBNx: A component-centric toolkit for modeling and inference with Bayesian networks (Technical Report MSTTR- 2001-67). Redmond, WA: Microsoft Research.Google Scholar
Kautonen, T., Tornikoski, E. T., & Kibler, E. (2011). Entrepreneurial intentions in the third age: The impact of perceived age norms. Small Business Economics, 37, 279–234. http://dx.doi.org/10.1007/s11187-009-9238-yCrossRefGoogle Scholar
King, E., & Ryan, T. P. (2002). A preliminary investigation of maximum likelihood logistic regression versus exact logistic regression. The American Statistician, 56, 163170. http://dx.doi.org/10.1198/00031300283CrossRefGoogle Scholar
King, G., & Zeng, L. (2001a). Explaining rare events in international relations. International Organization, 55, 693715. http://dx.doi.org/10.1162/00208180152507597Google Scholar
King, G., & Zeng, L. (2001b). Logistic regression in rare events data. Political Analysis, 9, 137163. http://dx.doi.org/10.1093/oxfordjournals.pan.a004868CrossRefGoogle Scholar
Krueger, N. F., & Brazeal, D. V. (1994). Entrepreneurial potential and potential entrepreneurs. Entrepreneurship Theory and Practice, 18, 91104.Google Scholar
Krueger, N. F., & Carsrud, A. L. (1993). Entrepreneurial intentions: Applying the theory of planned behavior. Entrepreneurship and Regional Development, 5, 315330. http://dx.doi.org/10.1080/08985629300000020CrossRefGoogle Scholar
Krueger, N. F., Reilly, M. D., & Carsrud, A. L. (2000). Competing models of entrepreneurial intentions. Journal of Business Venturing, 15, 411432. http://dx.doi.org/10.1016/S0883-9026(98)00033-0CrossRefGoogle Scholar
Krynski, T. R., & Tenenbaum, J. B. (2007). The role of causality in judgment under uncertainty. Journal of Experimental Psychology: General, 136, 430450. http://dx.doi.org/10.1037/0096-3445.136.3.430Google Scholar
Kumar, A., Rao, V. R., & Soni, H. (1995). An empirical comparison of neural network and logistic regression models. Marketing Letters, 6, 251263. http://dx.doi.org/10.1007/BF00996189CrossRefGoogle Scholar
Lee, S. M., Abbott, P., & Johantgen, M. (2005). Logistic regression and Bayesian networks to study outcomes using large data sets. Nursing Research, 2, 133138. http://dx.doi.org/10.1097/00006199-200503000-00009Google Scholar
Licht, A. N., & Siegel, J. I. (2006). The social dimensions of entrepreneurship. In Casson, M., Yeung, B., Basu, A., & Wadeson, N. (Eds.), The Oxford handbook of entrepreneurship (pp. 514539). New York, NY: Oxford University Press.Google Scholar
Lilienfeld, D. E., & Pyne, D. A. (1984). The logistic analysis of epidemiologic prospective studies: Investigation by simulation. Statistics in Medicine, 3, 1526. http://dx.doi.org/10.1002/sim.4780030104Google Scholar
Liñán, F., Battistelli, A., & Moriano, J. A. (2008). Entrepreneurial intentions in Europe. In Moriano, J. A., Gorgievski, M., & Lukes, M. (Eds.), Teaching psychology of entrepreneurship: Perspectives from six European countries (pp. 2143). Madrid, Spain: National Open University (UNED).Google Scholar
Liñán, F., Rodríguez-Cohard, J. C., & Rueda-Cantuche, J. M. (2011). Factors affecting entrepreneurial intention levels: A role for education. International Entrepreneurship Management Journal, 7, 195218. http://dx.doi.org/10.1007/s11365-010-0154-zCrossRefGoogle Scholar
Long, J. S. (1997). Regression models for categorical and limited dependent variables. Thousand Oaks, CA: SAGE.Google Scholar
López, J. (2009). Modelos predictivos en actitudes emprendedoras: Análisis comparativo de las condiciones de ejecución de las redes bayesianas & la regresión logística [Predictive models of entrepreneurial attitudes: Comparative performance analysis of Bayesian networks and logistic regression]. (Unpublished doctoral dissertation) Universidad de Almería, Spain.Google Scholar
López, J., & García, J. (2007). Valores, actitudes y comportamiento ecológico modelados con una red bayesiana [Values, attitudes and ecologic behavior modeled with a Bayesian net]. Medio Ambiente & Comportamiento Humano, 8, 159175.Google Scholar
López, J., & García, J. (2009). Asimetría en el razonamiento causal bayesiano bajo incertidumbre [Asymmetry in Bayesian causal reasoning under uncertainty]. Boletín de Psicología, 95, 4358.Google Scholar
López, J., & García, J. (2011). Utilidad de las redes bayesianas enpsicología. [Utility of the Bayesian networks in psychology]. Almería, Spain: Editorial de la Universidad de Almería.Google Scholar
López, J., García, J., Cano, C. J., Gea, A. B., & De la Fuente, L. (2010). A definition of potential entrepreneur from a probabilistic point of view. In Blanca, M. J., Alarcón, R., & López-Montiel, D. (Coords.), Actas del XI Congreso de Metodología de las Ciencias Sociales & de la Salud (pp. 577581). Málaga: UMA-Tecnolex.Google Scholar
López, J., García, J., De la Fuente, L., & De la Fuente, E. I. (2007). Las redes bayesianas como herramienta de modelado en psicología [Bayesian nets as modeling tools in psychology]. Anales de Psicología, 23, 307316.Google Scholar
López, J., Ramírez, A., & Casado, M. P. (2012). Modelling entrepreneurial attitudes in women entrepreneurs with bayesian networks. Psychology, 3, 265271. http://dx.doi.org/10.4236/psych.2012.33037Google Scholar
López, J., Ruiz-Ruano, A. M., & García, J. (2008, November). Relationship between self-assessment and marks in higher education: linear, logistic and Bayesian analysis. Communication presented at the International Conference of Education, Research and Innovation (ICERI 2008). Madrid, Spain.Google Scholar
Martin, J., & VanLehn, K. (1995). Student assessment using Bayesian nets. International Journal of Human-Computer Studies, 42, 575591. http://dx.doi.org/10.1006/ijhc.1995.1025Google Scholar
Martínez, I., & Rodríguez, C. (2003). Modelos gráficos. [Graphical models]. In Águila, Y. del et al. (Eds.), Técnicas estadísticas aplicadas al análisis de datos (pp. 217257). Almería, Spain: Servicio de Publicaciones de la Universidad de Almería.Google Scholar
McClelland, D. (1955). Some social consequences of achievement motivation. In Jones, M. R. (Ed.), Nebraska Symposium on Motivation. Lincoln, NE: University of Nebraska Press.Google Scholar
McClelland, D. (1961). The achieving society. New York, NY: Free Press.Google Scholar
McKenzie, B., Ugbah, S., & Smothers, N. (2007). “Who is an entrepreneur?” Is it still the wrong question? Academy of Entrepreneurship Journal, 13, 2343.Google Scholar
Mehta, C. R., & Patel, N. R. (1995). Exact logistic regression: Theory and examples. Statistics in Medicine, 14, 21432160. http://dx.doi.org/10.1002/sim.4780141908CrossRefGoogle Scholar
Miller, B. K., Bell, J. D., Palmer, M., & Gonzalez, A. (2009). Predictors of entrepreneurial intentions: A quasi-experiment comparing students enrolled in introductory management and entrepreneurship classes. Journal of Business and Entrepreneurship, 21(2), 3962.Google Scholar
Mislevy, R. J., & Gitomer, D. H. (1996). The role of probability-based inference in an intelligent tutoring system. User-Mediated and User-Adapted Interaction, 128, 253282. http://dx.doi.org/10.1007/BF01126112Google Scholar
Morales, J. F., Rebolloso, E., & Moya, M. (1994). Actitudes [Attitudes]. In Morales, J. F. (Ed.), Psicología social [Social psychology]. (pp. 495524). Madrid, Spain: McGraw-Hill.Google Scholar
Morales, M. E. (2006). Modelización & predicción en estadística universitaria [Modeling and prediction in university statistics]. (Unpublished doctoral dissertation). Universidad de Almería, Spain.Google Scholar
Moriano, J. A., Gómez, A., Laguna, M., & Roznowski, B. (2008). Validación de un cuestionario para medir la intención emprendedora. Una aplicación en España & Polonia [Validation of a questionnaire to measure the entrepreneurial intention. An application in Spain and Poland]. In Morales, J. F., Huici, C., Gómez, A., Gaviria, E. (Coords.), Método, teoría e investigación en psicología social [Methot, theory and research in social psychology] (pp. 101121). Madrid, Spain: Pearson.Google Scholar
Morillas, J. J. (2009). Los nuevos yacimientos de empleo entre las estrategias para el apoyo a emprendedores en el marco de los programas de desarrollo local: Situación actual en Andalucía [The new sources of employment between the strategies supporting entrepreneurs within the framework of the programs of local development: Current situation in Andalusia]. (Unpublished doctoral dissertation) Universidad de Almería, Spain.Google Scholar
Narayan, S., & Jurafsky, D. (1998, August). Bayesian models of human sentence processing. Communication presented at the XX Annual Meeting of the Cognitive Science Society. Madison, WI.Google Scholar
Narayan, S., & Jurafsky, D. (2002). A Bayesian model predicts human parse preference and reading times in sentence processing. Advances in Neural Information Processing, 14, 5965.Google Scholar
Ng, A. Y., & Jordan, M. I. (2002). On discriminative vs. generative classifiers: A comparation of logistic regression and naive Bayes. Advances in Neural Information Processing Systems, 14, 841848.Google Scholar
Ortega, M., & Cayuela, A. (2002). Regresión logística no condicionada & tamaño de muestra: Una revisión bibliográfica [Unconditioned logistic regression and sample size: A reference source review]. Revista Española de Salud Pública, 76, 8593.CrossRefGoogle Scholar
Othman, N. H., & Ishak, S. B. (2009). Attitude choosing a career in entrepreneurship amongst graduates. European Journal of Social Sciences, 10, 419434.Google Scholar
Peduzzi, P., Concato, J., Feinstein, A. R., & Holford, T. R. (1995). Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. Journal of Clinical Epidemiology, 48, 15031510. http://dx.doi.org/10.1016/0895-4356(95)00048-8Google Scholar
Peduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49, 13731379. http://dx.doi.org/10.1016/S0895-4356(96)00236-3Google Scholar
Peñas, M. J., & Quijano, J. (2008, April). ¿Es posible fomentar el carácter emprendedor desde la universidad? Un diseño de la asignatura «Empresa Familiar» [Is it possible to promote entrepreneurial disposition from the university? Design of the subject «Familiar Business»]. Communication presented at the International Congress of Entrepreneurs of the City of Salamanca. Salamanca, Spain.Google Scholar
Peng, C. Y. J., & So, T. S. H. (2002). Logistic regression analysis and reporting: a premier. Understanding Statistics, 1, 3170.Google Scholar
Phan, P. H., & Butler, J. E. (2003). Entrepreneurs' attitudes, strategy choices, and firm performance. Journal of Business and Entrepreneurship, 15, 7491.Google Scholar
Polopolus, L. C., & Emerson, R. D. (1991). Entrepreneurship, sanctions, and labor contracting. Southern Journal of Agricultural Economics, 12, 5768.Google Scholar
Ragland, D. R. (1992). Dichotomizing continuous outcome variables: Dependence of the magnitude of association and statistical power of the cutpoint. Epidemiology, 3, 434440. http://dx.doi.org/10.1097/00001648-199209000-00009Google Scholar
Reade, S., & Kupper, L. L. (1995). On the effects of predictor misclassification in multiple linear regression analysis. Communications in Statistics: Theory and Methods, 24, 1337.Google Scholar
Robinson, P. B., Stimpson, D. V., Huefner, J. C., & Hunt, H. K. (1991). An attitude approach to the prediction of entrepreneurship. Entrepreneurship Theory and Practice, 15, 1331.Google Scholar
Rogoff, E. G., & Lee, M. S. (1996). Does firm origin matter? An empirical examination of types of small business owners and entrepreneurs. Academy of Entrepreneurship Journal, 1, 117.Google Scholar
Ross, T., Wettig, H., Grünwald, P., Myllymäki, P., & Tirri, H. (2005). On discriminative Bayesian networks classifiers and logistic regression. Machine Learning, 59, 267296.Google Scholar
Ruiz, J., Rojas, A., & Suárez, A. (2008). Actitudes de los estudiantes universitarios de Andalucía ante la creación de empresas [Attitudes of the university students of Andalusia about the creation of companies]. Cádiz, Spain: Servicio de Publicaciones de la Universidad de Cádiz.Google Scholar
Samuelson, P. A. (1970). Economics (8th Ed.). New York, NY: McGraw-Hill.Google Scholar
Sánchez, M. L. (2003). El perfil psicológico del autoempleado [The self-employed psychological profile]. (Electronically published doctoral dissertation). Universidad Complutense de Madrid, Spain.Google Scholar
Shapero, A., & Sokol, L. (1982). The social dimensions of entrepreneurship. In Kent, C., Sexton, D., & Vesper, K. H. (Eds.), The encyclopedia of entrepreneurship (pp. 7290). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Shapero, A. (1975). The displaced, uncomfortable entrepreneur. Psychology Today, 9, 83133.Google Scholar
Shapero, A. (1985). Why entrepreneurship? A worldwide perspective. Journal of Small Business Management, 23(4), 15.Google Scholar
Shen, B., Su, X., Greiner, R., Musilek, P., & Cheng, C. (2003, November). Discriminative parameter learning of general bayesian network classifiers. Communication presented at the 15th IEEE International Conference on Tools with Artificial Intelligence (ICTAI-03). Sacramento, CA.Google Scholar
Silva, L. C., & Barroso, I. M. (2004). Regresión logística [Logistic regression]. Madrid, Spain: La Muralla/Hespérides.Google Scholar
Stanworth, J., Stanworth, C., Granger, B., & Blyth, S. (1989). Who becomes an entrepreneur? International Small Business Journal, 8, 1122. http://dx.doi.org/10.1177/026624268900800101Google Scholar
Steensma, H. K., Marino, L., & Weaver, K. M. (2000). Attitudes toward cooperative strategies: A cross-cultural analysis of entrepreneurs. Journal of International Business Studies, 31, 591609. http://dx.doi.org/10.1057/palgrave.jibs.8490924CrossRefGoogle Scholar
Terrin, N., Schmid, C. H., Griffith, J. L., D'Agostino, R., & Selker, H. P. (2003). External validity of predictive models: A comparison of logistic regression, classification trees, and neural networks. Journal of Clinical Epidemiology, 56, 721729. http://dx.doi.org/10.1016/S0895-4356(03)00120-3CrossRefGoogle ScholarPubMed
Thompson, J. L. (2004). The facets of the entrepreneur: Indentifying entrepreneurial potential. Management Decision, 42, 243258. http://dx.doi.org/10.1108/00251740410515861CrossRefGoogle Scholar
Valls, F. (1996). Programa autoaplicable de asesoramiento vocacional [Self-applied program of vocational counseling]. Almería, Spain: Editorial Universidad de Almería.Google Scholar
Veciana, J. M. (1989). Características del empresario en España [Characteristics of the entrepreneur in Spain]. Papeles de Economía Española, 39, 1936.Google Scholar
Veciana, J. M., Aponte, M., & Urbano, D. (2005). University students' attitudes towards entrepreneurship: A two countries comparison. International Entrepreneurship and Management Journal, 1, 165182. http://dx.doi.org/10.1007/s11365-005-1127-5Google Scholar
Walker, S. H., & Duncan, D. B. (1967). Estimation of the probability of an event as function of several independent variables. Biometrika, 54, 167179. http://dx.doi.org/10.2307/2333860Google Scholar
Whittermore, A. S. (1981). Sample size for logistic regression with small response probability. Journal ofAmericanStatistical Association, 76, 2732.CrossRefGoogle Scholar
Zhao, L. P., & Kolonel, L. (1992). Efficiency loss from categorizing quantitative exposures into qualitative exposures in case-control studies. American Journal of Epidemiology, 136, 464474.Google Scholar