Hostname: page-component-6bf8c574d5-mcfzb Total loading time: 0 Render date: 2025-03-04T09:35:11.700Z Has data issue: false hasContentIssue false

Building Trust with AI: How Essential is Validating AI Models in the Therapeutic Triad of Therapist, Patient, and Artificial Third? Comment on What is the Current and Future Status of Digital Mental Health Interventions?

Published online by Cambridge University Press:  24 February 2025

Alejandro Garcia-Rudolph*
Affiliation:
Universitat Autònoma de Barcelona, Spain Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Spain
David Sánchez-Pinsach
Affiliation:
Universitat Autònoma de Barcelona, Spain Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Spain
Anna Gilabert
Affiliation:
Universitat Autònoma de Barcelona, Spain Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Spain
Joan Saurí
Affiliation:
Universitat Autònoma de Barcelona, Spain Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Spain
Maria Dolors Soler
Affiliation:
Universitat Autònoma de Barcelona, Spain Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Spain
Eloy Opisso
Affiliation:
Universitat Autònoma de Barcelona, Spain Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Spain
*
Corresponding author: Alejandro Garcia-Rudolph, Departmento de Investigación e Innovación, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain; Emails: [email protected]; [email protected]

Abstract

Since the publication of “What is the Current and Future Status of Digital Mental Health Interventions?” the exponential growth and widespread adoption of ChatGPT have underscored the importance of reassessing its utility in digital mental health interventions. This review critically examined the potential of ChatGPT, particularly focusing on its application within clinical psychology settings as the technology has continued evolving through 2023 and 2024. Alongside this, our literature review spanned US Medical Licensing Examination (USMLE) validations, assessments of the capacity to interpret human emotions, analyses concerning the identification of depression and its determinants at treatment initiation, and reported our findings. Our review evaluated the capabilities of GPT-3.5 and GPT-4.0 separately in clinical psychology settings, highlighting the potential of conversational AI to overcome traditional barriers such as stigma and accessibility in mental health treatment. Each model displayed different levels of proficiency, indicating a promising yet cautious pathway for integrating AI into mental health practices.

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Universidad Complutense de Madrid and Colegio Oficial de la Psicología de Madrid

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alkaissi, H., & McFarlane, S. I. (2023). Artificial hallucinations in ChatGPT: Implications in scientific writing. Cureus, 15(2). http://doi.org/10.7759/cureus.35179.Google ScholarPubMed
Baños, R. M., Herrero, R., & Vara, M. D. (2022). What is the current and future status of digital mental health interventions?. The Spanish Journal of Psychology, 25, e5. http://doi.org/10.1017/SJP.2022.2.CrossRefGoogle Scholar
Bendig, E., Erb, B., & Schulze-Thuesing, L., & Baumeister, H. (2019). The next generation: Chatbots in clinical psychology and psychotherapy to foster mental health–A scoping review. Verhaltenstherapie, 32(1), 113. https://doi.org/10.1159/000501812Google Scholar
Cheng, S. W., Chang, C. W., Chang, W. J., Wang, H. W., Liang, C. S., Kishimoto, T., Chang, J. P., Kuo, J. S., & Su, K. P. (2023). The now and future of ChatGPT and GPT in psychiatry. Psychiatry Clinical Neuroscience, 77(11), 592596. https://doi.org/10.1111/pcn.13588.CrossRefGoogle ScholarPubMed
Elyoseph, Z., Refoua, E., Asraf, K., Lvovsky, M., Shimoni, Y., & Hadar-Shoval, D. (2024). Capacity of generative AI to interpret human emotions from visual and textual data: Pilot evaluation study. JMIR Mental Health, 6(11), 54369. https://doi.org/10.2196/54369.CrossRefGoogle Scholar
Exploding Topics. (2024). Number of ChatGPT Users. Retrieved May 2024, from https://explodingtopics.com/blog/chatgpt-users.Google Scholar
Eysenbach, G. (2023). The role of ChatGPT, generative language models, and artificial intelligence in medical education: A conversation with ChatGPT and a Call for papers. JMIR Medical Education, 6(9), 46885. https://doi.org/10.2196/46885.CrossRefGoogle Scholar
D’Souza, R. F., Amanullah, S., Mathew, M., & Surapaneni, K. M. (2023). Appraising the performance of ChatGPT in psychiatry using 100 clinical case vignettes. Asian Journal of Psychiatry, 89, 103770. https://doi.org/10.1016/j.ajp.2023.103770.CrossRefGoogle Scholar
Guillen-Grima, F., Guillen-Aguinaga, S., Guillen-Aguinaga, L., Alas-Brun, R., Onambele, L., Ortega, W., Montejo, R., Aguinaga-Ontoso, E., Barach, P., & Aguinaga-Ontoso, I. (2023). Evaluating the efficacy of ChatGPT in navigating the Spanish medical residency entrance examination (MIR): Promising horizons for AI in clinical medicine. Clinics and Practice, 13(6),14601487. https://doi.org/10.3390/clinpract13060130.CrossRefGoogle ScholarPubMed
Gilson, A., Safranek, C.W., Huang, T., Socrates, V., Chi, L., Taylor, R.A., & Chartash, D. (2023). How does ChatGPT perform on the United States medical Licensing Examination (USMLE)? The implications of large language models for medical education and knowledge assessment. JMIR Medical Education, 8(9), 45312. https://doi.org/10.2196/45312.CrossRefGoogle Scholar
Kung, T. H., Cheatham, M., Medenilla, A., Sillos, C., De Leon, L., Elepaño, C., Madriaga, M., Aggabao, R., Diaz-Candido, G., Maningo, J., & Tseng, V. (2023). Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLOS Digit Health, 2(2), 0000198. https://doi.org/10.1371/journal.pdig.0000198CrossRefGoogle ScholarPubMed
Levkovich, I., & Elyoseph, Z. (2023a). Suicide risk assessments through the eyes of ChatGPT-3.5 Versus ChatGPT-4: Vignette study. JMIR Mental Health, 20(10), 51232. https://doi.org/10.2196/51232.CrossRefGoogle Scholar
Levkovich, I., & Elyoseph, Z. (2023b). Identifying depression and its determinants upon initiating treatment: ChatGPT versus primary care physicians. Family Medicine and Community Health, 11(4), 002391. https://doi.org/10.1136/fmch-2023-002391.CrossRefGoogle ScholarPubMed
Lungren, M. P., Fishman, E. K., Chu, L. C., Rizk, R. C., & Rowe, S. P. (2023). More is different: Large language models in health care. Journal of the American College of Radiology, 1, 1546–1440. https://doi.org/10.1016/j.jacr.2023.11.021.Google Scholar
Mihalache, A., Huang, R. S., Popovic, M. M., & Muni, R. H. (2024). ChatGPT-4: An assessment of an upgraded artificial intelligence chatbot in the United States Medical Licensing Examination. Medical Teacher, 46(3), 366372. https://doi.org/10.1080/0142159X.2023.2249588.CrossRefGoogle ScholarPubMed
Murcia. (2024). Convocatorias de procesos selectivos—Convocatoria al cuerpo superior facultativo, opción Psicología [Announcements of selective processes—Announcement for the higher technical body, Psychology option]. Retrieved May 2024, from https://empleopublico.carm.es/web/pagina?IDCONTENIDO=2340&IDTIPO=200&CODIGO_CUERPO=AFX17&CODIGO_CONVOCATORIA=AFX17C22&TIPO_ACCESO=L&RASTRO=c$m61986,61991,62006.Google Scholar
Obradovich, N., Khalsa, S. S., Khan, W. U., Suh, J., Perlis, R. H., Ajilore, O., & Paulus, M. P. (2024). Opportunities and risks of large language models in psychiatry. NPP-Digital Psychiatry and Neuroscience, 2(1), 8. https://doi.org/10.1038/s44277-024-00010-zCrossRefGoogle ScholarPubMed
OpenAI. (2024). Creating safe AGI that benefits all of humanity. Retrieved May 2024, from https://openai.com/chatgpt/Google Scholar
Pardo-Cebrián, R., Calero-Elvira, A., & Guerrero-Escagedo, M. C. (2022). Verbal behavior analysis of expert and inexperienced therapists applying the socratic method. The Spanish Journal of Psychology, 25, e19. https://doi.org/10.1017/SJP.2022CrossRefGoogle ScholarPubMed
Parry, S., Pachunka, J., & Beck Dallaghan, G. L. (2019). Factors predictive of performance on USMLE Step 1: Do Commercial Study aids improve scores? Medical Science Educator, 29(3), 667672. https://doi.org/10.1007/s40670-019-00722-4.CrossRefGoogle ScholarPubMed
Schwartz, L. F., Lineberry, M., Park, Y. S., Kamin, C. S., & Hyderi, A. A. (2018). Development and evaluation of a student-initiated test preparation program for the USMLE Step 1 Examination. Teaching and Learning in Medicine, 30(2), 193201. https://doi.org/10.1080/10401334.2017.1386106.CrossRefGoogle ScholarPubMed
Tal, A., Elyoseph, Z., Haber, Y., Angert, T., Gur, T., Simon, T., & Asman, O. (2023). The artificial third: Utilizing ChatGPT in mental health. The American Journal of Bioethics, 23(10), 7477. https://doi.org/10.1080/15265161.2023.2250297.CrossRefGoogle ScholarPubMed
Wong, R. S. Y. (2024). ChatGPT in psychiatry: Promises and pitfalls. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 60, 14. https://doi.org/10.1186/s41983-024-00791-2CrossRefGoogle Scholar
Wright, B., Dave, S., & Dogra, N. (2017). 100 cases in psychiatry. Taylor & Francis Group.Google Scholar