Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T12:20:41.339Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  17 July 2017

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © 1988 Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, P.H. 1954. Organic constituents of fossils. Carnegie Institute of Washington Year Book, 53:97101.Google Scholar
Abelson, P.H. 1955. Organic constituents of fossils. Carnegie Institute of Washington Year Book, 54:107109.Google Scholar
Addadi, L., Berkovitch-Yellin, Z., Weissbuch, I., Van Mil, J., Shimon, L.J.W., Lahav, M. and Leiserowitz, L. 1985. Growth and dissolution of organic crystals with “tailor-made” inhibitors - implications in stereochemistry and materials science. Angewandte Chemie, 24:466485.Google Scholar
Addadi, L., Moradian, J., Shay, E., Maroudas, N.G. and Weiner, S. 1987. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation. Relevance to biomineralization. Proceedings National Academy of Sciences (U.S.A.), 84:27322736.Google Scholar
Addadi, L. and Weiner, S. 1985. Imteractions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proceedings National Academy of Sciences (U.S.A.), 82:41104114.Google Scholar
Akiyama, M. 1971. The amino acid composition of fossil scallop shell proteins and no proteins. Biomineralization Research Reports, 3:6570.Google Scholar
Alexander, R., Larcher, A.V., Kagi, R.I. and Price, P.L. 1988. The use of plant derived biomarkers for correlation of oils with source rocks in the Cooper/Eromanga Basin system, Australia. Australian Petroleum Exploration Association Journal, 310324.Google Scholar
Anders, E. and Owen, T. 1977. Mars and Earth: origin and abundance of volatiles. Science, 198:453465.CrossRefGoogle ScholarPubMed
Angerer, R.C., Davidson, E.H. and Britten, R.J. 1976. Single copy DNA and structural gene sequence relationships among four sea urchin species. Chromosoma, 56:213226.Google Scholar
Archer, M. 1976. The dasyurid dentition and its relationships to that of the didelphids, thylacinids, borhyaenids (Marsupicarnivora) and peramelids (Peramelina: Marsupialia). Australian Journal of Zoology, Supplement Series, 39:124.Google Scholar
Armstrong, W.G., Halstead, L.B., Reed, F.B. and Wood, L. 1983. Fossil proteins in vertebrate calcified tissues. Philosophical Transactions of the Royal Society of London, 301B:301343.Google Scholar
Asada, K., Kanematsu, S., Okaka, S. and Hayakawa, T. 1980. Phylogenetic distribution of three types of superoxide dismutase in organisms and in cell organelles, pp. 136153. In, Bannister, J.V. and Hill, H.A.O., eds., Chemical and Biochemical Aspects of Superoxide and Superoxide Dismutase. Elsevier, North Holland.Google Scholar
Ayala, F.J. 1978. The mechanisms of evolution. Scientific American, 293:5669.CrossRefGoogle Scholar
Bai, P. and Warshawsky, H. 1985. Morphological studies on the distribution of enamel matrix using routine electron microscopy and freeze-fracture replicas in the rat incisor. Anatomical Record, 212:116.CrossRefGoogle ScholarPubMed
Barghoorn, E.S., Meinschein, W.G. and Schopf, J.W. 1965. Paleobiology of a Precambrian shale. Science, 148:461472.CrossRefGoogle ScholarPubMed
Belay, N., Sparling, R. and Daniels, L. 1984. Dinitrogen fixation by a thermophillic methanogenic bacterium. Nature, 312:286288.CrossRefGoogle ScholarPubMed
Belkin, S., Wirsen, C.O. and Jannasch, H.W. 1985. Biological and abiological sulfur reduction at high temperatures. Applied and Environmental Microbiology, 49:10571061.Google Scholar
Benjamin, D.C. (and 14 other authors). 1984. The antigenic structure of proteins. Annual Review of Immunology, 2:67101.Google Scholar
Benson, S.C., Benson, N.C. and Wilt, F. 1986. The organic matrix of the skeletal spicule of sea urchin embryos. Journal of Cell Biology, 102:18781886.Google Scholar
Benveniste, R.E. 1985. The contributions of retroviruses to the study of mammalian evolution, pp. 359417. In, MacIntire, R.J., ed., Molecular Evolutionary Genetics. Plenum, New York.Google Scholar
Benveniste, R.E. and Todaro, G.J. 1976. Evolution of type C viral genes: evidence for an Asian origin of man. Nature, 261:101108.Google Scholar
Benveniste, R.E., Callahan, R., Sherr, C.J., Chapman, V. and Todaro, G.J. 1977. Two distinct endogenus type C viruses isolated from the Asian rodent Mus cervicolor: conservation of virogene sequence in related rodent species. Journal of Virology, 21:849862.Google Scholar
Bergstein, T. and Cavari, B.Z. 1983. Sulfide utilization by the photosynthetic bacterium Chlorobium phaeobacteroides . Hydrobiologia, 106:241246.Google Scholar
Berman, A., Addadi, L. and Weiner, S. 1988. Interactions of sea urchin skeleton macromolecules with growing calcite crystals: a study of intracrystalline proteins. Nature, 331:546548.Google Scholar
Bernal, J.D. 1954. The origin of life. New Biologist, 16:2840.Google Scholar
Bird, C.W., Lynch, J.M., Pirt, F.J., and Reid, W.W., Brooks, C.J.W. and Middleditch, B.S. 1971a. Steroids and squalene in Methylococcus capsulatus grown on methane. Nature, 230:473474.Google Scholar
Bird, C.W., Lynch, J.M., Pirt, F.J. and Reid, W.W. 1971b. The identification of hop-22(29)-ene in prokaryotic organisms. Tetrahedron Letters, 31893190.Google Scholar
Bishop, M.J. and Friday, A.E. 1985. Evolutionary trees from nucleic acid and protein sequences. Proceedings of the Royal Society of London, 226B:271302.Google Scholar
Bishop, M.J. and Rawlings, C.J. (eds.). 1987. Nucleic acid and protein sequence analysis: a practical approach. IRL Press, Oxford, 417 p.Google Scholar
Blake, A.J. and Carver, J.H. 1977. The evolutionary role of atmospheric ozone. Journal of Atmospheric Science, 34:720728.Google Scholar
Blake, C.C.F. 1978. Do genes-in-pieces imply proteins-in-pieces? Nature, 273:267.CrossRefGoogle Scholar
Bloch, K. 1962. Comparative aspects of lipid metabolism, pp. 377390. In, Leone, C.A., ed., Taxonomic Biochemistry and Serology. Ronald Press, New York.Google Scholar
Bloch, K. 1965. Lipid patterns in the evolution of organisms, pp. 5367. In, Bryson, V. and Vogel, H.J., eds., Evolving Genes and Proteins. Academic Press, New York.CrossRefGoogle Scholar
Bodenmuller, H. and Schaller, H. 1981. Conserved amino-acid sequence of a neuropeptide, the head activator, from coelenterates to humans. Nature, 293:579580.Google Scholar
Bonner, J. 1965. The isoprenoids, pp. 665693. In, Bonner, J. and Varner, J.E., eds., Plant Biochemistry. Academic Press, New York.Google Scholar
Bonner, T.I., Heinemann, R. and Todaro, G.J. 1980. Evolution of DNA sequences has been retarded in Malagasy primates. Nature, 286:420423.Google Scholar
Bouvier, P.M., Rohmer, P., Benveniste, P. and Ourisson, G. 1976. d 8(14)-Steroids in the bacterium Methylococcus capsulatus . Biochemistry Journal, 159:267271.Google Scholar
Brassell, S.C. 1985. Molecular changes in sediment lipids as indicators of systematic early diagenesis. Philosophical Transactions of the Royal Society of London, A3:5775.Google Scholar
Brassell, S.C., Wardroper, A.M.K., Thompson, I.D., Maxwell, J.R. and Eglinton, G. 1981. Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments. Nature, 290:693696.Google Scholar
Brassell, S.C., Eglinton, G. and Mo, Fu Jia. 1986a. Biological marker compounds as indicators of the depositional history of the Maoming oil shale. Organic Geochemistry, 10:927941.Google Scholar
Brassell, S.C., Eglinton, G., Marlowe, I.T., Pflaumann, U. and Sarnthein, M. 1986b. Molecular stratigraphy: a new tool for climatic assessment. Nature, 320:129133.Google Scholar
Brassell, S.C., Eglinton, G. and Howell, V.J. 1987. Palaeoenvironmental assessment of marine organic-rich sediments using molecular organic geochemistry, pp. 7998. In, Brooks, J. and Fleet, A.J., eds., Marine Petroleum Source Rocks. Geological Society Special Publication, 26.Google Scholar
Britten, R.J. 1982. Genomic alterations in evolution, pp. 4164. In, Bonner, J.T., ed., Evolution and Development. Dahlem Konferenzen, Springer-Verlag, Berlin.Google Scholar
Britten, R.J. 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science, 231:13931398.Google Scholar
Britten, R.J. 1988. DNA evolution and echinoderm systematics. In, Paul, C.R.C. and Smith, A.B., eds., Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Britten, R.J. and Kohne, D.E. 1968. Repeated sequences in DNA. Science, 161:529540.Google Scholar
Britten, R.J., Graham, D.E. and Henerey, M. 1972. Sea urchin repetitive and single copy DNA. Carnegie Institution Washington Year Book, 71:270273.Google Scholar
Britten, R.J., Graham, D. E. and Neufeld, B.R. 1974. Analysis of repeating DNA sequences by reassociation, pp. 363418. In, Grossman, L. and Moldave, K., eds., Methods in Enzymology, 29, Part E. Academic Press, New York.Google Scholar
Britten, R.J., Cetta, A. and Davidson, E.H. 1978. The single-copy DNA sequence polymorphism of the sea urchin Strongylocentrotus purpuratus . Cell, 15:11751186.Google Scholar
Brock, T.D. 1986. Notes on the ecology of thermophilic Archaebacteria. Systematic and Applied Microbiology, 7:213215.Google Scholar
Broda, E. 1975a. The history of inorganic nitrogen in the biosphere. Journal of Molecular Evolution, 7:87100.Google Scholar
Broda, E. 1975b. The Evolution of Bioenergetic Processes. Pergamon Press, New York, 211p.Google Scholar
Broda, E. and Peschek, G.A. 1983. Nitrogen fixation as evidence for reducing nature of the early atmosphere. BioSystems, 16:18.Google Scholar
Brown, W.M., Prager, E.M., Wang, A. and Wilson, A.C. 1982. Mitochondrial DNA sequence of primates: Tempo and mode of evolution. Journal of Molecular Evolution, 18:225239.CrossRefGoogle ScholarPubMed
Brownell, E. 1983. DNA/DNA hybridization studies of muriod rodents: symmetry and rates of molecular evolution. Evolution, 37:10341051.CrossRefGoogle Scholar
Caccone, A. and Powell, J.R. 1987. Molecular evolutionary divergence among North American cave crickets. II. DNA-DNA hybridization. Evolution, 41:12151238.Google Scholar
Calvin, M. 1968. Molecular palaeontology. Transactions of the Leicester Literary and Philosophical Society, 62:4569.Google Scholar
Cammack, R., Rao, K.K. and Hall, D.O. 1981. Metalloproteins in the evolution of photosynthesis. BioSystems, 14:5780.Google Scholar
Cann, R.L., Brown, W.M. and Wilson, A.C. 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics, 106:479499.Google Scholar
Canuto, V.M., Levine, J.S., Augustsson, T.R. and Imhoff, C.L. 1982. UV radiation from the young Sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature, 296:816820.Google Scholar
Carlson, S.S., Wilson, A.C. and Maxson, R.D. 1978. Do albumin clocks run on time? Science, 200:11831185.Google Scholar
Carver, J.H. 1981. Prebiotic atmospheric oxygen levels. Nature, 292:136138.Google Scholar
Cavalli-Sforza, L.L. and Edwards, A.W.F. 1967. Phylogenetic analysis: models and estimation procedures. Evolution, 32:550570.Google Scholar
Cech, T.R. 1986. A model for the RNA-catalyzed replication of RNA. Proceedings of the National Academy of Sciences U.S.A., 83:4360.Google Scholar
Chapman, D.J. and Schopf, J.W. 1983. Biological and biochemical effects of the development of an aerobic environment, pp. 302320. In, Schopf, J.W., ed., Earth's Earliest Biosphere. Princeton University Press, Princeton.Google Scholar
Chappe, B., Michaelis, W. and Albrecht, P. 1980. Molecular fossils of archaebacteria as selective degredation products of kerogen, pp. 265274. In, Douglas, A.G. and Maxwell, J.R., eds., Advances in Organic Geochemistry, 1979, Pergamon Press, Oxford.Google Scholar
Chappe, B., Albrecht, P. and Michaelis, W. 1982. Polar lipids of archaebacteria in sediments and petroleum. Science, 217:6566.Google Scholar
Chappe, B., Albrecht, P. and Michaelis, W. 1983. Archaebacterial molecular markers in sediments and petroleums. Terra Cognita, 3:216.Google Scholar
Clark, R.B. 1979. Radiation of the metazoa, pp. 55102. In, House, M.R., ed., Origin of Major Invertebrate Groups. Academic Press, London.Google Scholar
Collins, M.J. 1986. Post mortality strength loss in shells of the recent articulate brachiopod Terebratulina retusa (L) from the west coast of Scotland, pp. 209218. In, Racheboeuf, P.R. and Emig, C.C., eds., Les Brachiopodes fossiles et actuels, Biostratigraphie du Paleozoic, 4.Google Scholar
Collins, M.J., Curry, G.B., Muyzer, G., Westbroek, P., Zomerdijk, T. and Quinn, R. 1988. Sero-taxonomy of skeletal macromolecules in living terebratulid brachiopods. Historical Biology (in press).Google Scholar
Cloud, P. 1973. Evolution of ecosystems. American Scientist, 62:5466.Google Scholar
Cloud, P. 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology, 2:351387.Google Scholar
Cohen, Y., Padan, E. and Shilo, M. 1975. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica . Journal of Bacteriology, 123:855861.Google Scholar
Constantz, B. and Weiner, S. 1988. Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. Journal of Experimental Biology, (in press).CrossRefGoogle Scholar
Cracraft, J. 1987. DNA hybridization and avian phylogenetics. Evolutionary Biology, 21:4796.Google Scholar
Creighton, T.E. 1983. Proteins. W.H. Freeman, New York, 515p.Google Scholar
Curry, G.B. and Ansell, A.D. 1986. Tissue mass in living brachiopods, pp. 231241. In, Racheboeuf, P.R. and Emig, C.C., eds., Les Brachiopodes fossiles et actuels, Biostratigraphie du Paleozoic, 4.Google Scholar
Curry, G.B. 1987. Molecular Palaeontology: new life for old molecules. Trends in Ecology and Evolution, 2:161165.CrossRefGoogle ScholarPubMed
Darnell, J.E. and Doolittle, W.F. 1986. Speculations on the early course of evolution. Proceedings of the National Academy of Sciences U.S.A., 83:12711275.Google Scholar
Dayhoff, M.O. 1983. Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence. Precambrian Research, 20:299318.Google Scholar
De Jong, E.W., Westbroek, P., Westbroek, J.F. and Bruning, J.W. 1974. Preservation of antigenic properties in macromolecules over 70myr old. Nature, 252:6364.Google Scholar
De Jong, W.W. and Hendricks, W. 1986. The eye lens crystallins: ambiguity as evolutionary strategy. Journal of Molecular Evolution, 24:121129.Google Scholar
De Leeuw, J.W., Van Der Meer, F.W., Rijpstra, W.I.C. and Schenck, P.A. 1980. On the occurrence and structural identification of long chain unsaturated ketones and hydrocarbons in sediments, pp. 211217. In, Douglas, A.G. and Maxwell, J.R., eds., Advances in Organic Geochemistry, 1979, Pergamon Press, Oxford.Google Scholar
De Rosa, M., Gambacorta, A., Minale, L. and Bu'lock, J.D. 1971. Bacterial triterpenes. Journal of the Chemical Society Chemical Communications, 619620.Google Scholar
Delmas, P.D., Tracey, R.P., Riggs, B.L. and Mann, K.G. 1984. Identification of the noncollagenous proteins of bone by two-dimensional gel electrophoresis. Calcified Tissue International, 36:308316.Google Scholar
Degens, E.T. 1978. The protobiosphere. Chemical Geology, 22:177187.Google Scholar
Delsemme, A.H. 1984. The cometary connection with prebiotic chemistry. Origins of Life, 14:5160.Google Scholar
Diamond, J.M. 1983. Taxonomy by nucleotides. Nature, 305:1718.Google Scholar
Dickerson, R.E. 1978. Chemical evolution and the origin of life. Scientific American, 239:70109.Google Scholar
Dickerson, R.E. and Geis, I. 1983. Hemoglobin: Structure, Function, Evolution and Pathology. Benjamin-Cummings, Menlo Park, California, 176 p.Google Scholar
Djerassi, C. 1981. Recent studies in the marine steroid field. Pure and Applied Chemistry, 53:873890.Google Scholar
Drozd, J.W., Tubb, R.S. and Postgate, J.R. 1972. A chemostat study of the effect of fixed nitrogen sources on nitrogen fixation, membranes and free amino acids in Azotobacter chroococcum . Journal of General Microbiology, 73:221232.Google Scholar
Durham, J.W. 1966. Clypeasteroids, pp. 450491. In, Moore, R.C., ed., Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Egami, F. 1974. Inorganic types of fermentation and anaerobic respiration in the evolution of energy-yielding metabolism. Origins of Life, 5:405413.Google Scholar
Egami, F. 1976. Comment on E. Broda's recent publications. Journal of Molecular Evolution, 8:387388.Google Scholar
Eglinton, G., Scott, P.M., Belsky, T., Burlingame, A.L. and Calvin, M. 1964. Hydrocarbons of biological origin from a one-billion-year-old sediment. Science, 145:263264.Google Scholar
Elwood, H.J., Olsen, G.J. and Sogin, M.L. 1985. The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulosa . Molecular Biology and Evolution, 2:399410.Google Scholar
Ensminger, A., van Dorsselaer, A., Spyckerelle, C. and Albrecht, P. 1974. Pentacyclic triterpenes of the hopane type as ubiquitous geochemical markers: origin and significance, pp. 245260. In, Tissot, B. and Bienner, F., eds., Advances in Organic Geochemistry, 1973, Editions Technip, Paris.Google Scholar
Farris, J.S. 1972. Estimating phylogenetic trees from distance matrices. American Naturalist, 106:645668.Google Scholar
Felsenstein, J. 1982. Numerical methods for inferring evolutionary trees. Quarterly Review of Biology, 57:379404.Google Scholar
Felsenstein, J. 1984. Distance methods for inferring phylogenies: a justification. Evolution, 38:1624.Google Scholar
Ferronskiy, V.I. and Polyakov, V.A. 1982. Origin of the Earth's hydrosphere in the light of isotopic and theoretical studies. Geochemistry International, 19:1927.Google Scholar
Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R. and Raff, R.A. 1988. Molecular phylogeny of the animal kingdom. Science, 239:748753.Google Scholar
Fincham, A.G. and Belcourt, A.B. 1985. Amelogenin biochemistry: current concepts, pp. 240247. In, Buttler, W.T., ed., The Chemistry and Biology of Mineralized Tissues. Ebsco Media Inc., Birmingham, Alabama.Google Scholar
Fischer, L.W., Gehron Robey, P., Tuross, N., Otsuka, A.S., Tepen, D.A., Esch, F.S., Shimasaki, S. and Termine, J.D. 1987. The Mr 24,000 phosphoprotein from developing bone is the NH2-terminal properties of the a1 chain of type 1 collagen. Journal of Biological Chemistry, 262:1345713463.Google Scholar
Fitch, W.M. and Margoliash, E. 1967. Construction of phylogenetic trees: A method based on mutational distances as estimated from cytochrome c sequences is of general applicability. Science, 155:279284.Google Scholar
Fleagle, J.G., Bown, T.M., Obradovich, J.D. and Simons, E.L. 1986. Age of the earliest African anthropoids. Science, 234:12471249.Google Scholar
Flynn, L.J., Jacobs, L.L. and Lindsay, E.H. 1985. Problems in muroid phylogeny. Relationship to other rodents and origin of major groups, pp. 589616. In Luckett, W.P. and Hartenberger, J.L., eds., Evolutionary Relationships among Rodents: a Multidisciplinary Analysis. Plenum, New York.Google Scholar
Fowler, M.G. and Douglas, A.G. 1987. Saturated hydrocarbon biomarkers in oils of Late Precambrian age from Eastern Siberia. Organic Geochemistry, 11:201203.Google Scholar
Fox, G.E., Stackebrandt, B., Hespell, R.B., Gibson, J., Maniloff, J., Dyer, T.A., Wolfe, R.S., Balch, W.E., Tanner, R.S., Mangrum, L.J., Zahlen, L.B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B.J., Stahl, D.A., Luehrsen, K.R., Chen, K.N. and Woese, C.R. 1980. The phylogeny of prokaryotes. Science, 209: 457463.Google Scholar
Frauenfelder, H. 1983. Summary and outlook. Mobility and function in proteins and nucleic acids. Ciba Foundation Symposium, 93:329343.Google Scholar
Galau, G.A., Britten, R.J. and Davidson, E.H. 1974. A measure of the sequence complexity of polysomal messenger RNA in sea urchin embryos. Cell, 2:920.Google Scholar
Galau, G.A., Klein, W.H., Davis, M.M., Wold, B.J., Britten, R.J. and Davidson, E.H. 1976a. Structural gene sets active in embryos and adult tissues of the sea urchin. Cell, 7:487505.Google Scholar
Galau, G.A., Chamberlin, M.E., Hough, B.R., Britten, R.J. and Davidson, E.H. 1976b. Evolution of repetitive and nonrepetitive DNA, pp. 200224. In, Ayala, F.J., ed., Molecular Evolution. Sinauer Press, Sunderland, Massachusetts.Google Scholar
Gallegos, E.J. 1976. Analysis of organic mixtures using metastable transition spectra. Analytical Chemistry, 48:13481351.Google Scholar
Gelpi, E., Schneider, H., Mann, J. and Oro, J. 1970. Hydrocarbons of geochemical significance in microscopic algae. Phytochemistry, 9:603612.Google Scholar
Gilbert, W. 1978. Why genes in pieces? Nature, 271:501.Google Scholar
Gilbert, W. 1987. The exon theory of genes. Cold Spring Harbor Symposium Quantitative Biology, 52:901906.CrossRefGoogle ScholarPubMed
Gillespie, D. 1977. Newly evolved repeated DNA sequences in primates. Science, 196:889891.Google Scholar
Gillespie, J.H. 1986. Natural selection and the molecular clock. Molecular Biology and Evolution, 3:138155.Google Scholar
Glimcher, M.J. 1984. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Philosophical Transactions Royal Society London, 304B:479508.Google Scholar
Goldberg, E. 1977. Isozymes in testes and spermatozoa. Current Topics in Biological and Medical Research, 1:79124.Google Scholar
Goldberg, R.B., Crain, W.R., Ruderman, J.V., Moore, G.P., Barnett, T.R., Higgins, R.C., Gelfand, R.A., Galau, G.A., Britten, R.J. and Davidson, E.H. 1975. DNA sequence organization in the genomes of five marine invertebrates. Chromosoma, 51:225251.Google Scholar
Goodman, M. 1963. Man's place in the phylogeny of the primates as reflected in serum proteins. In, Washburn, S.L., ed., Classification and Human Evolution. Aldine, Chicago.Google Scholar
Goodman, M. 1981. Decoding the pattern of protein evolution. Progress in Biophysics and Molecular Biology, 37:105164.Google Scholar
Goodman, M. (ed.). 1982. Macromolecular Sequences in Systematic and Evolutionary Biology. Plenum, New York, 418 p.Google Scholar
Goodman, M. and Tashian, R.E. (eds.). 1975. Molecular Anthropology: Genes and Proteins in the Evolutionary Ascent of the Primates. Plenum, New York, 466 p.Google Scholar
Goodman, M., Weiss, M.L. and Czelusniak, J. 1982. Molecular evolution above the species level: Branching pattern, rates, and mechanisms. Systematic Zoology, 31:376399.Google Scholar
Gould, S.J. 1985. A clock of evolution. Natural History, 4/85:1225.Google Scholar
Gould, S.J. 1986. Fuzzy Wuzzy was a bear. Andy Panda, too. Discover, February:4048.Google Scholar
Graham, D.E., Neufeld, B.R., Davidson, E.H. and Britton, R.J. 1974. Interspersion of repetitive and nonrepetitive DNA sequences in the sea urchin genome. Cell, 1:127137.Google Scholar
Grantham, P.J. 1986. The occurrence of unusual C27 and C29 sterane predominances in two types of Oman crude oil. Organic Geochemistry, 9:110.Google Scholar
Grantham, P.I., Lijmbach, G.W.M., Posthuma, J., Hughes Clarke, M.W. and Willink, R.J. 1988. Origin of crude oils in Oman. Journal of Petroleum Geology, 11:6170.Google Scholar
Gray, M.W. and Doolittle, W.F. 1982. Has the endosymbiont hypothesis been proven? Microbiological Reviews, 46:142.Google Scholar
Grula, J.W., Hall, T.J., Hunt, J.A., Giugni, T.D., Graham, G.J., Davidson, E.H. and Britton, R.J. 1982. Sea urchin DNA sequence variation and reduced interspecies differences of the less variable DNA sequences. Evolution, 36:665676.Google Scholar
Gurnett, A.M., O'Connell, J.P., Harris, D.E., Lehmann, H., Joysey, K.A. and Nevo, E. 1984. The myoglobin of rodents: Lagostomus maximus (viscacha) and Spalax ehrenbergi (mole rat). Journal of Protein Chemistry, 3:445454.Google Scholar
Hall, J.B. 1973. The occurrence of nitrate on the early Earth and its role in the evolution of procaryotes. Space Life Sciences, 4:204213.Google Scholar
Hall, T.J., Grula, J.W., Davidson, E.H. and Britten, R.J. 1980. Evolution of sea urchin nonrepetitive DNA. Journal of Molecular Evolution, 16:95110.Google Scholar
Hammer, M.F., Schilling, J.W., Prager, E.M. and Wilson, A.C. 1987. Recruitment of lysozyme as a major enzyme in the mouse gut: duplication, divergence and regulatory evolution. Journal of Molecular Evolution, 24:272279.Google Scholar
Hare, P.E. and Abelson, P.H. 1965. Amino acid composition of some calcified proteins. Carnegie Institute Washington Year Book, 64:223234.Google Scholar
Hare, P.E. and Abelson, P.H. 1968. Racemization of amino acids in shells. Carnegie Institute of Washington Year Book, 66:526528.Google Scholar
Hare, P.E., Hoering, T.C. and King, K. (eds.). 1980. Biogeochemistry of Amino Acids. John Wiley, New York, 558 pp.Google Scholar
Hare, P.E. and Mitterer, R.M. 1966. Nonprotein amino acids in fossil shells. Carnegie Institute of Washington Year Book, 65:362364.Google Scholar
Harpold, M.M. and Craig, S.P. 1978. The evolution of nonrepetitive DNA in sea urchins. Differentiation, 10:711.Google Scholar
Harris, D.E., Gurnett, A.M., Lehmann, H. and Joysey, K.A. 1985. The myoglobin of rodents: Proechimys guariae (casiragua) and Mus musculus (house mouse). Federation of European Biochemical Societies Letters, 190:288292.Google Scholar
Haug, P. and Curry, D.J. 1974. Isoprenoids in a Costa Rican seep oil. Geochimica et Cosmochimica Acta, 33:601619.Google Scholar
Hauschka, P.V. 1980. Osteocalcin: a specific protein of bone with potential for fossil dating, pp. 7582. In, Hare, P.E., Hoering, T.C. and King, K., eds., Biogeochemistry of Amino Acids. John Wiley, New York.Google Scholar
ten Haven, H.L., de Leeuw, J.W. and Schenck, P.A. 1985. Organic geochemical studies of a Messinian evaporitic basin, Northern Appennines (Italy). I: Hydrocarbon biological markers for a hypersaline environment. Geochimica et Cosmochimica Acta, 49:21812219.Google Scholar
ten Haven, H.L., de Leeuw, J.W., Peakman, T.M. and Maxwell, J.R. 1986. Anomalies in steroid and hopanoid maturity indices. Geochimica et Cosmochimica Acta, 50:853855.Google Scholar
ten Haven, H.L., de Leeuw, J.W., Sinninghe Damste, J.S., Schenck, P.A., Palmer, S.E. and Zumberge, J.E. 1988. Application of biological markers in the recognition of palaeo hypersaline environments. In, Kelts, K., Fleet, A. and Talbot, M., eds., Lacustrine Petroleum Source Rocks. Blackwell, London, In Press.Google Scholar
Hayes, J.M., Kaplan, I.R. and Wedeking, K.W. 1983. Precambrian organic geochemistry, preservation of the record, pp. 93134. In, Schopf, J.W., ed., Earth's Earliest Biosphere; Its Origin and Evolution, Princeton University Press, Princeton.Google Scholar
Hayes, J.M., Takigiku, R., Ocampo, R., Calloth, H.J. and Albrecht, P. 1987. Isotopic compositions and probable origins of organic molecules in the Eocene Messel Shale. Nature, 329:4851.Google Scholar
Heftmann, E. 1965. Steroids, pp. 678893. In, Bonner, J. and Varner, J.E., eds., Plant Biochemistry. Academic Press, New York.Google Scholar
Helber, J.T., Johnson, T.R., Yarbrough, L.R. and Hirschberg, R. 1988. Effect of nitrogenous compounds on nitrogenase gene expression in anaerobic cultures of Anabena variabilis . Journal of Bacteriology, 170:558563.Google Scholar
Helm-Bychowski, K.M. and Wilson, A.C. 1986. Rates of nuclear DNA evolution in pheasant-like birds. Proceedings of the National Academy of Science, USA, 83:688692.Google Scholar
Helm-Bychowski, K.M. and Wilson, A.C. 1988. Temporal calibration of nuclear DNA evolution in phasianoid birds. Proceedings of the International Ornithological Congress, 19.Google Scholar
Henderson, R. and Unwin, P.N.T. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature, 257:2832.Google Scholar
Hendriks, L., Huysmans, E., Vandenberghe, A. and Dewachter, R. 1986. Primary structures of the 5S ribosomal RNAs of 11 arthropods and applicability of 5S RNA to the study of metazoan evolution. Journal of Molecular Evolution, 24:103109.Google Scholar
Hewitt, J. and Morris, J.G. 1975. Superoxide dismutase in some obligately anaerobic bacteria. Federation of European Biochemical Society Letters, 50:315318.Google Scholar
Higuchi, R., Wrischnik, L.A., Oakes, E., George, M., Tong, B. and Wilson, A.C. 1987. Mitochondrial DNA of the extinct quagga: relatedness and extent of post-mortem change. Journal of Molecular Evolution, 25:283287.Google Scholar
Hill, S. 1976. The apparent ATP requirement for nitrogen fixation in growing Klebsiella pneumoniae . Journal of Bacteriology, 141:297312.Google Scholar
Hills, I.R. and Whitehead, E.V. 1966. Triterpenes in optically active petroleum distillates. Nature, 209:977979.Google Scholar
Hinegardiner, R. 1976. Evolution of genome size, pp. 179199. In, Ayala, F.J., ed., Molecular Evolution. Sinauer Press, Sunderland, Massachusetts.Google Scholar
Hoering, T.C. 1967. The organic geochemistry of Precambrian rocks, pp. 87111. In, Abelson, P.H., ed., Researches in Geochemistry, vol. 2, Wiley, New York.Google Scholar
Hoering, T.C. 1974. A comparison of melanoidin and humic acid. Carnegie Institute of Washington Year Book, 72:682690.Google Scholar
Hoering, T.C. 1976. Molecular fossils from the Precambrian Nonesuch Shale. Carnegie Institute of Washington Year Book, 75:806813.Google Scholar
Howsley, R. and Pearson, H.W. 1979. pH dependent sulphide toxicity to oxygenic photosynthesis in cyanobacteria. FEMS Microbiology Letters, 6:287292.Google Scholar
Hunt, J.A. and Carson, H.L. 1983. Evolutionary relationships of four species of Hawaiian Drosophila as measured by DNA reassociation. Genetics, 104:353364.Google Scholar
Hunt, J.A., Hall, T.J. and Britten, R.J. 1981. Evolutionary distances in Hawaiian Drosophila measured by DNA reassociation. Journal of Molecular Evolution, 17:361367.Google Scholar
Hutton, J.R. and Wetmur, J.G. 1973. Effect of chemical modification on the rate of renaturation of deoxyribonucleic acid, deaminated and glyoxalated deoxyribonucleic acid. Biochemistry, 12:558563.Google Scholar
Hyman, L.H. 1951. The Invertebrates: Platyhelminthes and Rhynchocoela. McGraw Hill, New York, vol. 2.Google Scholar
Hyman, L.H. 1959. The Invertebrates: Smaller Coelomate Groups, McGraw Hill, New York, vol. 5.Google Scholar
Jackson, M.J., Powell, T.G., Summons, R.E. and Sweet, I.P. 1986. Hydrocarbon shows and petroleum source rocks in sediments as old as 1.7 × 109 years. Nature, 322:727729.Google Scholar
Jackson, M.J., Sweet, I.P. and Powell, T.G. 1988. Studies on petroleum geology and geochemistry of the Middle Proterozoic, McArthur Basin, Northern Australia 1: Petroleum potential. Australian Petroleum Exploration Association Journal, 28:283302.Google Scholar
Jacobs, H.T., Posakony, J.W., Grula, J.W., Roberts, J.W., Xin, J.-H., Britten, R.J. and Davidson, E.H. 1983. Mitochondrial DNA sequences in the nuclear genome of Strongylocentrotus purpuratus . Journal of Molecular Biology, 165:609632.Google Scholar
Jacobs, L.L. 1978. Fossil rodents (Rhizomyidae and Muridae) from Neogene Siwalik deposits, Pakistan. Museum of Northern Arizona Bulletin, 52:1103.Google Scholar
Jaeger, J.J., Tong, H. and Denys, C. 1986. The age of the Mus-Rattus divergence: paleontological dta compared with the molecular clock. Comptes Rendus de l'Academie des Sciences de Paris, II, 302:917922.Google Scholar
Jodaikin, A., Traub, W. and Weiner, S. 1986. Protein conformation in rat tooth enamel. Archives Oral Biology, 31:685689.Google Scholar
Jodaikin, A., Talmon, Y., Weiner, S., Grossman, E. and Traub, W. 1988. Mineral organic matrix relations in tooth enamel. International Journal Biological Macromolecules, (in press).CrossRefGoogle Scholar
Johal, S. and Chollet, R. 1980. Ribulose-1,5bisphosphate carboxylase/oxygenase: enzymic, physicochemical and nutritional properties. What's New in Plant Physiology, 11:4548.Google Scholar
Johns, R.B., Belsky, T., McCarthy, E.D., Burlingame, A.L., Haug, P., Schnoes, H.K., Richter, W.J. and Calvin, M. 1966. The organic geochemistry of ancient sediments. Geochimica et Cosmochimica Acta, 30:11911222.Google Scholar
Jones, W.J., Nagle, D.P. Jr. and Whitman, W.B. 1987. Methanogens and the diversity of the Archaebacteria. Microbiological Reviews, 51:135177.Google Scholar
Jope, M. 1980. Phylogenetic information derivable from fossil bachiopods, pp. 8394. In, Hare, P.E., Hoering, T.C. and King, K., eds., Biogeochemistry of Amino Acids. John Wiley, New York.Google Scholar
Jordan, D.B. and Ogren, W.L. 1981. Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase. Nature, 291:513515.Google Scholar
Joysey, K.A. 1978. An appraisal of molecular sequence data as a phylogenetic tool, based on the evidence of myoglobin, pp. 5767. In. Chivers, D. J. and Joysey, K. A., eds., Recent Advances in Primatology, volume 3, Evolution. Academic Press, London, New York.Google Scholar
Joysey, K.A. 1981. Molecular evolution and vertebrate phylogeny in perspective. Symposia of the Zoological Society of London, 46:189218.Google Scholar
Joysey, K.A. 1984. Problems in using protein sequences to reconstruct the pattern of evolution, with special reference to viscacha and mole-rat myoglobins, pp. 479485. In Schnek, A.G. and Paul, C., eds., Hemoglobin. Editions de l'Universite, Brussels.Google Scholar
Joysey, K.A. and Friday, A.E. (eds.). 1982. Problems of Phylogenetic Reconstruction. Systematics Association Special Volume 21. Academic Press, London, New York, 442 p.Google Scholar
Jukes, T.H. 1966. Molecules and Evolution. Columbia University Press, New York, 285p.Google Scholar
Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21132. In, Munro, H.N., ed., Mammalian Protein Metabolism. Academic Press, New York.Google Scholar
Julius, D., McDermott, A.B., Axel, R. and Jessell, T.M. 1988. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science, 241:558564.Google Scholar
Kasting, J.F. 1982. Stability of ammonia in the primitive atmosphere. Journal of Geophysical Research, 87:30913098.Google Scholar
Kasting, J.F. 1987. Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Research, 34:205229.Google Scholar
Kasting, J.F. and Walker, J.C.G. 1981. Limits on oxygen concentration in the prebiological atmosphere and the rate of abiotic fixation of nitrogen. Journal of Geophysical Research, 86:11471158.Google Scholar
Kates, M. 1978. The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Progress in the Chemistry of Fats and other Lipids, 15:301342.Google Scholar
Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, New York, 367 p.Google Scholar
Kirby, T.W., Lancaster, J.R. Jr. and Fridovich, I. 1981. Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii . Archives of Biochemistry and Biophysics, 210:140148.Google Scholar
Klein, W.H., Thomas, T.L., Lai, C., Scheller, R.H., Britten, R.J. and Davidson, E.H. 1978. Characteristics of individual repetitive sequence families in the sea urchin genome studied with cloned repeats. Cell, 14:889900.Google Scholar
Klomp, U.C. 1986. The chemical structure of a pronounced series of isoalkanes in South Oman crudes, pp. 807814. In, Leythaeuser, D. and Rullkotter, J., eds., Advances in Organic Geochemistry 1985, Pergamon Press, Oxford.Google Scholar
Knochel, W., Korge, E., Basner, A. and Meyerhof, W. 1986. Globin evolution in the genus Xenopus. Comparative analysis of cDNA coding for adult globin polypeptides of Xenopus borealis and Xenopus tropicalis . Journal of Molecular Evolution, 23:211223.Google Scholar
Knoll, A.H. 1983. Biological interactions and Precambrian eukaryotes, pp. 251283. In, Tevesz, M.J. and McCall, P.L., eds., Biotic Interactions in Recent and Fossil Benthic Communities, Plenum Press, New York.Google Scholar
Knoll, A.H. 1985. The distribution and evolution of microbial life in the late Proterozoic Era. Annual Review of Microbiology, 39:391417.Google Scholar
Knoll, A.H. and Barghoorn, E.S., 1975. Precambrian eukaryotic organisms: A reassessment of the evidence. Science, 190:5254.Google Scholar
Kohne, D.E., Chiscon, J.A. and Hoyer, B.H. 1972. Evolution of primate DNA sequences. Journal of Human Evolution, 1:627644.Google Scholar
Kokubu, N, Mayeda, T. and Urey, H.C. 1961. Deuterium contents of minerals, rocks and liquid inclusions from rocks. Geochimica et Cosmochimica Acta, 21:247256.Google Scholar
Kolesnikov, C.M. and Prosovskaya, E.L. 1986. Biochemical investigations of Jurassic and Recent brachiopod shells, pp. 113120. In, Racheboeuf, P.R. and Emig, C.C., eds., Les Brachiopodes fossiles et actuels, Biostratigraphie du Paleozoic, 4.Google Scholar
Koop, B.F., Goodman, M., Xu, P., Chan, K. and Slightom, J.L. 1986. Primate n globin DNA sequences and man's place among the great apes. Nature, 319:234238.Google Scholar
Krauskopf, K.B. 1979. Introduction to Geochemistry (2nd Edition). McGraw-Hill, New York, 617p.Google Scholar
Kuhn, W.R. and Atreya, S.K. 1979. Ammonia photolysis and the greenhouse effect in the primordial atmosphere of the Earth. Icarus, 37:207213.Google Scholar
Lake, J.A. 1988. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature, 331:184186.Google Scholar
Landsmann, J., Dennis, E.S., Higgins, T.J.V., Appleby, C.A., Kortt, A.A. and Peacock, W.J. 1986. Common evolutionary origin of legume and non-legume plant haemoglobins. Nature, 324:166168.Google Scholar
Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L. and Pace, N.R. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proceedings National Academy of Sciences U.S.A. 82:69556959.Google Scholar
Lane, D.J., Field, K.G., Olsen, G.J. and Pace, N.R. 1988. Reverse transcriptase sequencing of rRNA for phylogenetic analysis. Methods in Enzymology (in press).Google Scholar
Langworthy, T.A. 1985. Lipids of Archaebacteria p. 459497. In Woese, C.R. and Wolfe, R.S., eds., The Bacteria. A treatise on structure and function. Vol. 8. Academic Press, New York.Google Scholar
Largeau, C., Casadevall, E., Kadouri, A. and Metzger, P. 1984. Formation of Botryococcus-derived kerogens. Comparative study of immature torbanites and of the extant alga Botryococcus braunii . Organic Geochemistry, 6:327332.Google Scholar
Larson, A., Prager, E.M. and Wilson, A.C. 1984. Chromosomal evolution, speciation and morphological change in vertebrates: the role of social behavior. Chromosomes Today, 8:215228.Google Scholar
Lee, J.S. and Verma, D.P.S. 1984. Structure and chromosomal arrangement of leghemoglobin genes in kidney bean suggest divergence in soybean leghemoglobin gene loci following tetraploidization. The EMBO Journal, 3:27452752.Google Scholar
Levine, J.S. and Augustsson, T.R. 1985. The photochemistry of biogenic gases in the early and present atmosphere. Origins of Life, 15:299318.Google Scholar
Lewin, R. 1984. Pigment gene scrutinized. Science, 226:35.Google Scholar
Li, W.-H. 1983. Evolution of duplicate genes and pseudogenes, pp. 1437. In Nei, M. and Koehn, R.K., eds., Evolution of Genes and Proteins. Sinauer, Sunderland, Massachusetts.Google Scholar
Li, W.-H., Luo, C.-C. and Wu, C.-I. 1985. Evolution of DNA Sequences, pp. 194. In MacIntyre, R.J., ed., Molecular Evolutionary Genetics. Plenum Press, New York.Google Scholar
Li, W.-H. and Tanimura, M. 1987. The molecular clock runs more slowly in man than in apes and monkeys. Nature, 326:9396.Google Scholar
Liaaen-Jensen, S. 1979. Marine carotenoids, pp. 273. In Scheuer, P., ed., Marine Natural Products, Chemical and Biological Perspectives, Vol. 2, Academic Press, New York.Google Scholar
Lodish, H.F. and Rothman, J.E. 1979. The assembly of cell membranes. Scientific American, 240:3853.Google Scholar
Lorenzen, S. 1985. Phylogenetic aspects of pseudocoelomate evolution, pp. 210223. In Conway-Morris, S., George, J.D., Gibson, R. and Platt, H.M., eds., The Relationships of Lower Invertebrates. Clarendon Press, Oxford.Google Scholar
Lowenstam, H.A. and Margulis, L. 1980. Evolutionary prerequisites for early Phanerozoic calcareous skeletons. Biosystems, 12:2741.Google Scholar
Lowenstam, H.A., and Weiner, S. 1989. On Biomineralization. Oxford University Press, New York. (In press).Google Scholar
Lowenstein, J.M. 1980a. Species-specific proteins in fossils. Naturwissenschaften, 67:343346.Google Scholar
Lowenstein, J.M. 1980b. Immunospecificity of fossil collagens. In Hare, P.E. (ed.) Biogeochemistry of Amino Acids. Wiley, New York.Google Scholar
Lowenstein, J.M. 1981. Immunological reactions from fossil material. Philosophical Transactions of the Royal Society of London, 292B:143149.Google Scholar
Lowenstein, J.M. 1985. Molecular approaches to the identification of species. American Scientist, 73:541547.Google Scholar
Lowenstein, J.M. 1986. Molecular phylogenetics. Annual Review of Earth and Planetary Sciences, 14:7183.Google Scholar
Lowenstein, J.M. and Ryder, O.A., 1985. Immunological systematics of the extinct quagga (Equidae). Experimentia, 41:11921193.Google Scholar
Lowenstein, J.M., Sarich, V.M. and Richardson, B.J. 1981. Albumin systematics of the extinct mammoth and Tasmanian wolf. Nature, 291:409411.CrossRefGoogle ScholarPubMed
Loy, T.H. 1983. Prehistoric blood residues: detection on tool surfaces and identification of species of origin. Science, 12691271.Google Scholar
Mackenzie, A.S., Patience, R.L., Maxwell, J.R., Vandenbroucke, M. and Durand, B. 1980. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France -I. Changes in the configuration of acyclic isoprenoid alkanes, steranes and triterpanes. Geochimica et Cosmochimica Acta, 44:17091721.Google Scholar
Mackenzie, A.S., Brassell, S.C., Eglinton, G. and Maxwell, J.R. 1982. Chemical fossils; the geological fate of steroids. Science, 217:491504.Google Scholar
Mann, S. 1988. Molecular recognition in biomineralization. Nature, 332:119124.Google Scholar
Margulis, L. 1970. Origin of eukaryotic cells. Yale University Press, New Haven.Google Scholar
Margulis, L. 1981. Symbiosis in Cell Evolution. W.H. Freeman and Co., San Francisco.Google Scholar
Marshall, C.R. 1988a. DNA-DNA hybridization, phylogenetic reconstruction and the fossil record. These notes.Google Scholar
Marshall, C.R. 1988b. DNA-DNA hybridization, the fossil record, phylogenetic reconstruction and the evolution of the clypeasteroid echinoids. In Paul, C.R.C. and Smith, A.B., eds., Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Martin, R.L., Wood, C., Baehr, W. and Applebury, M.L. 1986. Visual pigment homologies revealed by DNA hybridization. Science, 232:12661269.Google Scholar
Martin, S.L., Vincent, K.A. and Wilson, A.C. 1983. Rise and fall of the delta globin gene. Journal of Molecular Biology, 164:513528.Google Scholar
Mattaj, I.W. 1984. snRNAs: from gene architecture to gene processing. Trends in Biochemical Sciences, 9:435437.Google Scholar
Maxson, R.D. and Maxson, L.R. 1986. Micro-compliment fixation: a quantitative estimator of protein evolution. Molecular Biology and Evolution, 3:375388.Google Scholar
Mayr, E. 1982. The Growth of Biological Thought: Diversity, Evolution and Inheritance. Belknap Press, Cambridge, Massachusetts, 974 p.Google Scholar
McKinney, M.L. 1986a. Biostratigraphic gap analysis. Geology, 14:3638.Google Scholar
McKinney, M.L. 1986b. How biostratigraphic gaps form. Journal of Geology, 94:875884.Google Scholar
McKirdy, D.M., Cox, R.E., Volkman, J.K. and Howell, V.J. 1986. Botryococcane in a new class of Australian non-marine crude oils. Nature, 320:5759.Google Scholar
McQuitty, L.L. 1966. Similarity analysis by reciprocal pairs for discrete and continuous data. Educational and Psychological Measurement, 26:825831.Google Scholar
Michaelis, W. and Albrecht, P. 1979. Molecular fossils of archaebacteria in kerogen. Naturwissenschaften, 66:420422.Google Scholar
Moldowan, J.M. and Seifert, W.K. 1980. First discovery of botryococcane in petroleum. Journal of the Chemical Society Chemical Communications, 912914.Google Scholar
Moldowan, J.M., Seifert, W.K. and Gallegos, E.J. 1985. Relationship between petroleum composition and depositional environmental of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69:12551268.Google Scholar
Murphy, M.T.J., McCormick, A. and Eglinton, G. 1967. Perhydro-B-carotene in the Green River Shale. Science, 157:10401042.Google Scholar
Murray, P.A. and Zinder, S.H. 1984. Nitrogen fixation by a methanogenic archaebacterium. Nature, 312:284286.Google Scholar
Muyzer, G., Westbroek, P., de Vrind, J.P.M., Tanke, J., Vrijheid, T., De Jong, E.W., Bruning, J.W. and Wehmiller, J.F. 1984. Immunology and organic geochemistry. Organic Geochemistry, 6:847855.Google Scholar
Mycke, B. and Michaelis, W. 1986. Molecular fossils from chemical degradation of macromolecular organic matter. Organic Geochemistry, 10:847858.Google Scholar
Mycke, B., Narjes, F. and Michaelis, W. 1987. Bacteriohopanetetrol from an oil shale kerogen. Nature, 326:179181.Google Scholar
Nakahara, H. 1983. Calcification of gastropod nacre, p. 225230. In Westbroek, P. and de Jong, E.W., eds., Biomineralization and Biological Metal Accumulation. Reidel, Dordrecht.Google Scholar
Nakahara, H., Bevelander, G. and Kakei, M. 1982. Electron microscopic and amino acid studies on the outer and inner shell layers of Haliotis refescens . Venus, Kyoto, 38:205211.Google Scholar
Nathans, J., Thomas, D. and Hogness, D.S. 1986. Molecular genetics of color vision: the genes encoding blue, green and red pigments. Science, 232:193202.Google Scholar
Nes, W.R. and McKean, M.L. 1977. Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore.Google Scholar
Nes, W.R. and Nes, W.D. 1980. Lipids in Evolution. Plenum Press, New York.Google Scholar
Nichols, B.W. 1970. Comparative lipid biochemistry of photosynthetic organisms, pp. 105118. In Harborne, J.B., ed., Phytochemical Phylogeny. Academic Press, New York.Google Scholar
Nichols, P.D., Mancuso, C.A. and White, D.C. 1987. Measurement of methanotroph and methanogen signature phospholipids for use in assessment of biomass and community structure in model systems. Organic Geochemistry, 11:451461.Google Scholar
Nuttall, G.H.F. 1904. Blood Immunity and Blood Relationships. Cambridge University Press, Cambridge.Google Scholar
O'Brien, S.J., Nash, W.G., Wildt, D.E., Bush, M.E. and Benveniste, R.E. 1985. A molecular solution to the riddle of the giant panda's phylogeny. Nature, 317:140144.Google Scholar
Ochman, H. and Wilson, A.C. 1987. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. Journal of Molecular Evolution, 26:7486.Google Scholar
Olsen, G.J. 1988a. The earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various techniques. Cold Springs Harbor Symposium Quantitative Biology, 52:(in press).Google Scholar
Olsen, G.J. 1988b. Phylogenetic analysis using ribosomal RNA. Methods in Enzymology, 164:(in press).Google Scholar
Olson, J.M. 1970. The evolution of photosynthesis. Science, 168:438446.Google Scholar
Olson-Stojkovich, J., West, A. and Lowenstein, J.M. 1986. Phylogenetics and biogeography in the Cladophorales Complex (Chlorophyta): some insights from immunological distance data. Botanica Marina, 29:239249.Google Scholar
Oren, A. and Padan, E. 1978. Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica . Journal of Bacteriology, 133:558563.Google Scholar
Oren, A., Padan, E. and Malkin, S. 1979. Sulfide inhibition of Photosystem II in cyanobacteria (blue-green algae) and tobacco chloroplasts. Biochimica et Biophysica Acta, 546:270279.Google Scholar
Oren, A. and Shilo, M. 1979. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Archives of Microbiology, 122:7784.Google Scholar
Oro, J., Holzer, G. and Lazcano-Araujo, A. 1980. The contribution of cometary volatiles to the primitive Earth, pp. 6782. In Holmiquist, R.M., ed., COSPAR: Life Sciences and Space Research, v. 8, Pergamon Press, New York.Google Scholar
Ostroukhov, S.B., Aref'ev, O.A., Makushina, V.M., Zabrodina, M.N. and Petrov, Al. A. 1982. Monocyclic aromatic hydrocarbons with isoprenoid chains. Neftekhimiya, 22:723738.Google Scholar
Ourisson, G., Albrecht, P. and Rohmer, M. 1979. The hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure and Applied Chemistry, 51:709729.Google Scholar
Ourisson, G., Albrecht, P. and Rohmer, M. 1982. Predictive microbial biochemistry: from molecular fossils to procaryotic membranes. Trends in Biochemical Science, 7:233239.Google Scholar
Ourisson, G., Albrecht, P. and Rohmer, M. 1984. The microbial origin of fossil fuels. Scientific American, 251:3441.Google Scholar
Ourisson, G., Rohmer, M. and Poralla, K. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annual Review of Microbiology, 41:301333.Google Scholar
Owen, T., Maillard, J.P., De Bergh, C. and Lutz, B.L. 1988. Deuterium on Mars: the abundance of HDO and the value of D/H. Science, 240:17671769.Google Scholar
Pace, N.R., Stahl, D.A., Lane, D.J. and Olsen, G.J. 1985. Analyzing natural microbial populations by rRNA sequences. American Society of Microbiology News, 51:412.Google Scholar
Paul, C.R.C. 1982. The adequacy of the fossil record, pp. 75117. In Joysey, K.A. and Friday, A.E., eds., Problems of Phylogentic Reconstruction. Systematics Association Special Volume No. 21. Academic Press, London.Google Scholar
Pilbeam, D. 1970. The Evolution of Man. Thames and Hudson, London, 216 p.Google Scholar
Pilbeam, D. 1986. Distinguished lecture: homonoid evolution and hominoid origins. American Anthropologist, 88:295312.Google Scholar
Poltaraus, A.B. 1981. The estimation of relative connections between nine species of echinodermata by molecular hybridization of their DNA. Zhurnal obshchei Biologii, 42(1):5559.Google Scholar
Postgate, J.R. 1974. Evolution within nitrogen-fixing systems, pp. 263292. In Carlisle, M. and Skehel, J., eds., Evolution in the Microbial World. Cambridge University Press.Google Scholar
Postgate, J.R. 1982. The Fundamentals of Nitrogen Fixation. Cambridge University Press, 252 p.Google Scholar
Powell, T.G. 1987. Depositional controls on source rock character and crude oil composition. Proceedings of the Twelfth World Petroleum Congress 2:3142.Google Scholar
Prager, E.M. and Wilson, A.C. 1971. The dependence of immunological cross-reactivity upon sequence resemblance among lysozymes. Journal of Biological Chemistry 246:5978; 246:7010.Google Scholar
Raff, R.A., Anstrom, J.A., Huffman, C.J., Leaf, D.S., Loo, J.-H., Showman, R.M. and Wells, D.E. 1984. Origin of a gene regulatory mechanism in the evolution of echinoderms. Nature, 310:312314.Google Scholar
Raff, R.A., Field, K.G., Ghiselin, M.T., Lane, D.J., Olsen, G.J., Parks, A.L., Parr, B.A., Pace, N.R. and Raff, E.C. 1988. Molecular analysis of distant phylogenetic relationships in echinoderms. In Paul, C.R.C. and Smith, A.B., eds., Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press.Google Scholar
Ragan, M.A. and Chapman, D.J. 1978. A Biochemical Phylogeny of the Protists. Academic Press, New York, 317 p.Google Scholar
Rainey, W.E., Lowenstein, J.M., Sarich, V.M. and Magor, D.M. 1984. Sirenian molecular systematics - including the extinct Steller's sea cow (Hydrodamalis gigas). Naturwissenschaften, 67:343346.Google Scholar
Renoux, J.-M. and Rohmer, M. 1986. Enzymatic cyclization of all-trans pentaprenyl methyl ethers by a cell-free system from the protozoon Tetrahymena pyriformis . European Journal of Biochemistry, 55:125132.Google Scholar
Renugopalakrishnan, V., Uchiyama, A., Horowitz, P.M., Rapaka, R.S., Suzuki, M., Lefteriou, B. and Glimcher, M.J. 1986. Preliminary studies of the secondary structure in solution of two phosphoproteins of chicken bone matrix by circular dichroism and Fourier-Transform Infrared Spectroscopy. Calcified Tissue International, 39:166170.Google Scholar
Roberts, J.W., Johnson, S.A., Kier, P., Hall, T.J., Davidson, E.H. and Britten, R.J. 1985. Evolutionary conservation of DNA sequences expressed in sea urchin eggs and early embryos. Journal of Molecular Evolution, 22:99107.Google Scholar
Robinson, N., Eglinton, G., Brassell, S.C. and Cranwell, P.A. 1984. Dinoflagellate origin for sedimentary 4a-methylsteroids and 5a(H)-stanols. Nature, 308:439442.Google Scholar
Rohmer, M., Bouvier-Nave, P. and Ourisson, G. 1984. Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology, 130:11371150.Google Scholar
Romer, A.S. 1966. Vertebrate Paleontology, 3rd ed. University of Chicago Press, 468 p.Google Scholar
Romero-Herrera, A.E., Lehmann, H., Joysey, K.A. and Friday, A.E. 1973. Molecular evolution of myoglobin and the fossil record: a phylogenetic synthesis. Nature, 246:389395.Google Scholar
Romero-Herrera, A.E., Lehmann, H., Joysey, K.A. and Friday, A.E. 1978. On the evolution of myoglobin. Philosophical Transactions of the Royal Society of London, 283B:61163.Google Scholar
Romero-Herrera, A.E., Lehmann, H., Castillo, O., Joysey, K.A. and Friday, A.E. 1976. Myoglobin of the orangutan as a phylogenetic enigma. Nature, 261:162164.Google Scholar
Romero-Herrera, A.E., Lieska, N., Goodman, M. and Simons, E.I. 1979. The use of amino acid sequence analysis is assessing evolution. Biochimie, 61:767779.Google Scholar
Rose, S.P.R. 1988. Reflections on reductionism. Trends in Biochemical Sciences, 13:160162.Google Scholar
Rubey, W.W. 1955. Development of the hydrosphere and atmosphere, with special reference to probable composition of the early atmosphere, p. 631650. In Poldervaart, A., ed., Crust of the Earth. Geological Society of America Special Paper 62.Google Scholar
Rubinstein, I. and Albrecht, P. 1975. The occurrence of nuclear methylated steranes in a shale. Journal of the Chemical Society, Chemical Communications, 957958.Google Scholar
Rullkötter, J., Aisenshtat, Z. and Spiro, B. 1984. Biological markers in bitumens and pyrolysates of Upper Cretaceous bituminous chalks from the Ghareb Formation (Israel). Geochimica et Cosmochimica Acta, 48:151157.Google Scholar
Runnegar, B. 1984. Crystallography of the foliated calcite shell layers of bivalve molluscs. Alcheringa, 8:273290.Google Scholar
Runnegar, B. 1986. Molecular palaeontology. Palaeontology, 29:124.Google Scholar
Saccone, C., Preparata, G. and Lanave, C. 1987. Chance, stochasticity and evolution: the Markov clock, pp. 159172. In Quagliariello, E., Bernardi, G. and Ullmann, A., eds., From Enzyme Adaptation to Natural Philosophy: Heritage from Jacques Monod. Elsevier, Amsterdam.Google Scholar
Sagan, C. 1973. Ultraviolet selection pressure on the earliest organisms. Journal of Theoretical Biology, 39:195200.Google Scholar
Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A., 74:54635467.Google Scholar
Sarich, V.M. 1985. Rodent macromolecular systematics, pp. 423452. In Luckett, W.P. and Hartenberger, J.L., eds., Evolutionary Relationships among Rodents: a Multidisciplinary Analysis. Plenum, New York.Google Scholar
Sarich, V.M. and Wilson, A.C. 1967a. Rates of albumin evolution in primates. Proceedings of the National Academy of Sciences, USA, 58:142148.Google Scholar
Sarich, V.M. and Wilson, A.C. 1967b. Immunological time scale for hominid evolution. Science, 158:12001203.Google Scholar
Savage, D.E. and Russell, D.E. 1983. Mammalian Paleofaunas of the World. Addison-Wesley, Reading, Massachusetts, 432 p.Google Scholar
Schaefle, J., Ludwig, B., Albrecht, P. and Ourisson, G. 1977. Hydrocabures aromatiques d'origine geologique II. Tetrahedron Letters, 41:36733676.Google Scholar
Schmidt, W.J. 1936. Uber die Kristailorientierung im Zahnschmelz. Naturwissenschaften, 24:361.Google Scholar
Schmitz, F.J. 1983. Uncommon marine steroids, p. 241297. In Scheuer, P.J., ed., Marine Natural Products. Chemical and Biological Perspectives. Academic Press, New York.Google Scholar
Schopf, J.W. 1975. Precambrian paleobiology: problems and perspectives. Annual Review of Earth and Planetary Sciences, 3:213250.Google Scholar
Schopf, J.W. 1978. The evolution of the earliest cells. Scientific American, 239:110138.Google Scholar
Schopf, J.W., Hayes, J.M. and Walter, M.W. 1983. Evolution of Earth's earliest ecosystems: recent progress and unsolved problems, p. 361384. In William Schopf, J., ed., Earth's Earliest Biosphere. Princeton University Press.Google Scholar
Schopf, J.W. and Oehler, D.Z. 1976. How old are the eukaryotes? Science, 193:4749.Google Scholar
Schopf, J.W. and Packer, B.M. 1987. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science, 237:7073.Google Scholar
Schroeder, R.A. and Bada, J.L. 1976. A review of the geochemical applications of the amino acid racemization reaction. Earth Sciences Reviews, 12:347391.Google Scholar
Segerer, A., Stetter, K.O. and Klink, F. 1985. Two contrary modes of chemolithotrophy in the same archaebacterium. Nature, 313:787789.Google Scholar
Seifert, W.K. and Moldowan, J.M. 1978. Applications of steranes, terpanes and monoaromatics to the maturation, migration and source of crude oils. Geochimica et Cosmochimica Acta, 42:7795.Google Scholar
Seilacher, A. 1979. Constructional morphology of sand dollars. Paleobiology, 5:191221.Google Scholar
Setoguchi, T. and Rosenberger, A.L. 1987. A fossil owl monkey from La Venta, Colombia. Nature, 326:692694.Google Scholar
Sheldon, F.H. 1987. Rates of single-copy DNA evolution in herons. Molecular Biology and Evolution, 4:5669.Google Scholar
Shinozaki, K., Yamada, C., Takahata, N. and Sugiura, M. 1983. Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of ribulose-1,5-biosphosphate carboxylase/oxygenase. Proceedings of the National Academy of Sciences, U.S.A., 80:40504054.Google Scholar
Shoshani, J., Lowenstein, J.M., Walz, D.A. and Goodman, M. 1985. Proboscidean origins of mastodon and woolly mammoth demonstrated immunologically. Paleobiology 11:429437.Google Scholar
Sibley, G.C. and Ahlquist, J.E. 1981. The phylogeny and relationships of the ratite birds as indicated by DNA-DNA hybridization, p. 301335. In Scudder, G.G.E. and Reveal, J.L., eds., Evolution Today, Proceedings of the 2nd International Congress of Systems in Evolutionary Biology. Carnegie-Mellon University, Hunt Institute for Botanical Documentation, Pittsburgh, Pennsylvania.Google Scholar
Sibley, G.C. and Ahlquist, J.E. 1983. Phylogeny and classification of birds based on the data of DNA-DNA hybridization, p. 245292. In Johnston, R.F., ed., Current Ornithology: Vol. 1. Plenum Press, New York.Google Scholar
Sibley, G.C. and Ahlquist, J.E. 1984. The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridization. Journal of Molecular Evolution, 20:215.Google Scholar
Sibley, G.C. and Ahlquist, J.E. 1987. DNA hybridization evidence of hominoid phylogeny: results from an expanded data set. Journal of Molecular Evolution, 26:99121.Google Scholar
Sibley, G.C., Ahlquist, J.E. and Sheldon, F.H. 1987. DNA hybridization and avian phylogenetics. Reply to Cracraft. Evolutionary Biology, 21:97125.Google Scholar
Sirevag, R., Buchanan, B.B., Berry, J.A. and Troughton, J.H. 1977. Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope technique. Archives of Microbiology, 112:3538.Google Scholar
Smiley, S. 1988. The phylogenetic relationships of holothurians: A cladistic analysis of the extant echinoderm classes. In Paul, C.R.C. and Smith, A.B., eds., Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press.Google Scholar
Smith, A.B. 1984. Classification of the Echinodermata. Palaeontology 27:431459.Google Scholar
Smith, A.B. 1984. Echinoid Palaeobiology. Allen & Unwin, London, 190p.Google Scholar
Smith, B.N. 1976. Evolution of C14 photosynthesis in response to changes in carbon and oxygen concentrations in the atmosphere through time. BioSystems, 8:2432.Google Scholar
Smith, M.J., Nicholson, R., Stuerzul, M. and Lui, A. 1982. Single copy DNA homology in sea stars. Journal of Molecular Evolution, 18:92101.Google Scholar
Souillard, N., Magot, M., Possot, O. and Sibold, L. 1988. Nucleotide sequence of regions homologous to nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcus thermolithotrophicus and Methanobacterium ivanovii: evolution implications. Journal of Molecular Evolution, 27:6576.Google Scholar
Springer, M. and Lilje, A. 1988. Biostratigraphy and gap analysis: the expected sequence of biostratigraphic events. Journal of Geology, 96:228236.Google Scholar
Stackebrandt, E. and Woese, C.R. 1981. The evolution of prokaryotes, pp. 131. In Carlisle, M.J., Collins, J.R., and Moseley, B.E.B., eds., Molecular and Cellular Aspects of Microbial Evolution. Cambridge University Press.Google Scholar
Stanier, R.Y., Doudoroff, M. and Adelberg, E.A. 1957. The Microbial World, First Edition, Prentice Hall, Englewood Cliffs, N.J. Google Scholar
Stanier, R.Y., Adelberg, E.A. and Ingraham, J.L. 1976. The Microbial World, Fourth Edition, Prentice Hall, Englewood Cliffs, N.J. Google Scholar
Stanier, R.Y., Ingraham, J.L., Wheelis, M.L. and Painter, P.R. 1986. The Microbial World, Fifth Edition, Prentice Hall, Englewood Cliffs, N.J. Google Scholar
Stanley, S.M. 1976. Fossil data and the Precambrian-Cambrian evolutionary transition. American Journal Science, 276:5676.Google Scholar
Stetter, K.O. and Gaag, G. 1983. Reduction of molecular sulphur by methanogenic bacteria. Nature, 305:309311.Google Scholar
Stetter, K.O., Lauerer, G., Thomm, M. and Neuner, A. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science, 236:822824.Google Scholar
Stewart, C.-B. and Wilson, A.C. 1987. Sequence convergence and functional adaptation of stomach lysozymes from foregut fermenters. Cold Spring Harbor Symposium on Quantitative Biology, 52:891899.Google Scholar
Stewart, C.-B., Schilling, J.W. and Wilson, A.C. 1987. Adaptive evolution in the stomach lysozymes of foregut fermenters. Nature, 330:401404.Google Scholar
Stewart, W.D.P. 1971. Physiological studies on nitrogen-fixing blue-green algae, p. 377391. In Lie, T.A. and Mulder, E.G., eds., Biological Nitrogen Fixation in Natural and Agricultural Habitats. Plant and Soil, special volume.Google Scholar
Stewart, W.D.P. 1977. A botanical ramble among the blue-green algae. British Phycological Journal, 12:89115.Google Scholar
Stoeckenius, W. 1976. The purple membrane of salt-loving bacteria. Scientific American, 234:3846.Google Scholar
Stoeckenius, W. 1985. The rhodopsin-like pigments of halobacteria: light-energy and signal transducers in an archaebacterium. Trends in Biochemical Sciences, 10:483486.Google Scholar
Strathmann, R. 1988. What larval echinoderms do and do not tell us about relationships of classes. In Paul, C.R.C. and Smith, A.B., eds., Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press.Google Scholar
Strauss, D. and Sadler, P.M. in press. Confidence intervals for the ends of local taxon ranges. Journal of Mathematical Geology.Google Scholar
Stumpf, P.K. 1965. Lipid metabolism, pp. 323345. In Bonner, J. and Varner, J.E., eds., Plant Biochemistry. Academic Press, New York.Google Scholar
Summons, R.E. 1987. Branched alkanes from ancient and modern sediments: isomer discrimination by GC/MS with multiple reaction monitoring. Organic Geochemistry, 11:281290.Google Scholar
Summons, R.E., Brassell, S.C., Eglinton, G., Evans, E., Horodyski, R.J., Robinson, N. and Ward, D.M. 1988b. Distinctive hydrocarbon biomarkers from fossiliferous sediment of the Late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochemica et Cosmochimica Acta, 52:In Press.Google Scholar
Summons, R.E. and Powell, T.G. 1986. Chlorobiaceae in Palaeozoic seas revealed by biological markers, isotopes and geology. Nature, 319:763765.Google Scholar
Summons, R.E. and Powell, T.G. 1987. Identification of aryl isoprenoids in source rocks and crude oils: biological markers for the green sulphur bacteria. Geochimica et Cosmoschimica Acta, 51:557566.Google Scholar
Summons, R.E., Powell, T.G. and Boreham, C.J. 1988a. Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III Composition of extractable hydrocarbons. Geochemica et Cosmochimica Acta, 52:In Press.Google Scholar
Summons, R.E., Volkman, J.K. and Boreham, C.J. 1987. Dinosterane and other steroidal hydrocarbons of dinoflagellate origin in sediments and petroleum. Geochemica et Cosmochimica Acta, 50:30753082.Google Scholar
Taylor, R.F. 1984. Bacterial Triterpenoids. Microbiological Reviews, 48:181198.Google Scholar
Termine, J.D. 1986. Bone proteins and mineralization. Rheumatology, 10:184196.Google Scholar
Termine, J.D., Belcourt, A.B., Christner, P.J., Conn, K.M. and Nylen, N.U. 1980. Properties of dissociative extracted fetal bovine tooth matrix proteins. I. Principal molecular species in developing bovine enamel. Journal of Biological Chemistry, 225:97609768.Google Scholar
Towe, K.M. 1978. Early Precambrian oxygen: a case against photosynthesis. Nature, 274:657661.Google Scholar
Towe, K.M. 1980. Preserved organic ultrastructure: an unreliable indicator for Paleozoic amino acid biogeochemistry, pp. 6574. In Hare, P.E., Hoering, T.C. and King, K., eds., Biogeochemistry of Amino Acids. John Wiley, New York.Google Scholar
Towe, K.M. 1981. Environmental conditions surrounding the origin and early evolution of life. Precambrian Research, 16:110.Google Scholar
Towe, K.M. 1985. Habitability of the early Earth: clues from the physiology of nitrogen fixation and photosynthesis. Origins of Life, 15:235250.Google Scholar
Ulrich, M.M.W., Perizonius, W.R.K., Spoor, C.F. and Sandberg, P.A. 1987. Extraction of osteocalcin from fossil bones and teeth. Biochemistry and Biophysics Research Contributions, 149:712719.Google Scholar
Van Der Rest, M., Rosenberg, L.C., Olsen, B.R. and Poole, A.R. 1986. Chondrocalcin is identical with the C-propeptide of type II procollagen. Biochemical Journal, 237:923925.Google Scholar
Van Dorsselaer, A., Ensminger, A., Spyckerelle, C., Dastillung, M., Sieskind, O., Arpino, P., Albrecht, P., Ourisson, G., Brooks, P.W., Gaskell, S.J., Kimble, B.J., Philp, R.P., Maxwell, J.R. and Eglinton, G. 1974. Degraded and extended hopane derivatives (C27-C35) as ubiquitous geochemical markers. Tetrahedron Letters, 13491352.Google Scholar
Van Gemerden, H. 1968. On the ATP generation by Chromatium in darkness. Archives Mikrobiology, 64:118124.Google Scholar
Vidal, G. and Knoll, A.H. 1983. Proterozoic plankton, pp. 265277. In Medaris, L.G. et al., eds., Proterozoic Geology: Selected Papers from an International Symposium. Geological Society of American Memoir, 161:265–277.Google Scholar
Volkman, J.K. 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry, 9:8399.Google Scholar
Volkman, J.K. and Maxwell, J.R. 1986. Acyclic isoprenoids as biological markers, pp. 142. In Johns, R.B. (ed.) Biological Markers in the Sedimentary Record. Elsevier, Amsterdam.Google Scholar
Volkman, J.K., Eglinton, G., Corner, E.D.S. and Sargent, J.R. 1980. Novel unsaturated straight-chain C37-C39 methyl and ethyl ketones in marine sediments and a coccolithophore Emiliania hyxleyi , pp. 219228. In Douglas, A.G. and Maxwell, J.R., eds., Advances in Organic Geochemistry, 1979, Pergamon Press, Oxford.Google Scholar
Vrba, E.S. 1980. The significance of bovid remains as indicators of environment and predation patterns. In Behrensmeyer, A.K. and Hill, A.P., eds., Fossils in the Making: Vertebrate Taphonomy and Paleoecology. University of Chicago Press.Google Scholar
Walker, J.C.G. and Brimblecombe, P. 1985. Iron and sulfur in the pre-biologic ocean. Precambrian Research, 28:205222.Google Scholar
Walker, J.C.G., Klein, C., Schidlowski, M., Schopf, J.W., Stevenson, D.J., and Walter, M.R. 1983. Environmental evolution of the Archean-Early Proterozoic Earth, pp. 260290. In William Schopf, J., ed., Earth's Earliest Biosphere. Princeton University Press.Google Scholar
Warburton, G.A. and Zumberge, J.E. 1983. Determination of petroleum sterane distributions by mass spectrometry with selective metastable ion monitoring. Analytical Chemistry, 55:123126.Google Scholar
Waples, D.W., Haug, P. and Welte, D.H. 1974. Occurrence of a regular C25 isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal, saline environment. Geochimica et Cosmochimica Acta, 38:381387.Google Scholar
Warrior, R. and Gall, J. 1985. The mitochondrial DNA of Hydra attenuata and Hydra littoralis consists of two linear molecules. Archiv Science Geneve, 38:439445.Google Scholar
Weiner, S. 1984. Organization of organic matrix components in mineralized tissues. American Zoologist, 24:945951.Google Scholar
Weiner, S. 1985. Organic matrix-like macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth. Journal of Experimental Zoology, 234:715.Google Scholar
Weiner, S. 1986. Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. CRC Critical Reviews in Biochemistry, 20:365408.Google Scholar
Weiner, S. and Hood, L. 1975. Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science, 190:987989.Google Scholar
Weiner, S. and Lowenstam, H.A. 1980. Well-preserved mollusk shells: characterization of mild diagenetic processes, pp. 95114. In Hare, P.E., Hoering, T.C. and King, K., eds., Biogeochemistry of Amino Acids. John Wiley, New York.Google Scholar
Weiner, S., Lowenstam, H.A. and Hood, L. 1976. Characterization of 80-million year old mollusk shell proteins. Proceedings National Academy of Sciences USA, 73:25412545.Google Scholar
Weiner, S., Lowenstam, H.A., Taborek, B. and Hood, L. 1979. Fossil mollusk shell organic matrix components preserved for 80 million years. Paleobiology, 5:144150.Google Scholar
Weiner, S. and Price, P.A. 1986. Disaggregation of bone into crystals. Calcified Tissue International, 39:365375.Google Scholar
Weiner, S., Talmon, Y. and Traub, W. 1983b. Electron diffraction of mollusk shell organic matrices and their relationship to the mineral phase. International Journal Biological Macromolecules, 5:325328.Google Scholar
Weiner, S. and Traub, W. 1984. Macromolecules in mollusc shells and their functions in biomineralization. Philosophical Transactions Royal Society of London, 304B:421438.Google Scholar
Weiner, S. and Traub, W. 1986. Organization of hydroxyapatite crystals within collagen fibrils. FEBS Letters, 206:262266.Google Scholar
Weiner, S., Traub, W., and Lowenstam, H.A. 1983a. Organic matrix in calcified exoskeletons, pp. 205224. In Westbroek, P. and de Jong, E.W., eds., Biomineralization and Biological Metal Accumulation. Reidel, Dordrecht.Google Scholar
Westbroek, P., van der Meide, P.H., van der Wey-Kloppers, J.S., van der Sluis, R.J., de Leeuw, J.W. and de Jong, E.W. 1979. Fossil macromolecules from cephalopod shells: characterization, immunological response and diagenesis. Paleobiology, 5:151160.Google Scholar
Wheeler, A.P., George, J.W. and Evans, C.A. 1981. Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science, 212:13971398.Google Scholar
Wheeler, W.C. and Honeycutt, R.L. 1988. Paired sequence difference in ribosomal RNAs: Evolutionary and phylogenetic implications. Molecular Biology and Evolution, 5:9096.Google Scholar
Whittington, H.B. 1985. The Burgess Shale. Yale University Press, New Haven.Google Scholar
Wilson, A.C., Cann, R.L., Carr, S.M., George, M., Gyllensten, U.B., Helm-Bychowski, K.M., Higuchi, R.G., Palumbi, S.R., Prager, E.M., Sage, R.D. and Stoneking, M. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biological Journal of the Linnean Society of London, 26:375400.Google Scholar
Wilson, A.C., Carlson, S.S. and White, T.J. 1977. Biochemical evolution. Annual Review of Biochemistry, 46:573639.Google Scholar
Wilson, A.C. and Kaplan, N.O. 1964. Enzyme structure and its relation to taxonomy, pp. 321346. In Leone, C.A., ed., Taxonomic Biochemistry and Serology. Ronald press, New York.Google Scholar
Wilson, A.C., Kunkel, J.G. and Wyles, J.S. 1984. Morphological distance: an encounter between two perspectives in evolutionary biology. Evolution, 38:11561159.Google Scholar
Wistow, G.J., Mulders, J.W.M. and de Jong, W.W. 1987. The enzyme lactate dehydrogenase as a structural protein in avian and crocodilian lenses. Nature, 326:622624.Google Scholar
Withers, N. 1983. Dinoflagellate sterols, pp. 87130. In Scheuer, P.J., ed., Marine Natural Products. Chemical and Biological Perspectives, Volume 5, Academic Press, New York.Google Scholar
Woese, C.R. 1987. Bacterial evolution. Microbiological Reviews, 51:221271.Google Scholar
Woese, C.R., Magrum, L.J. and Fox, G.E. 1978. Archaebacteria. Journal of Molecular Evolution, 11:245252.Google Scholar
Woese, C.R. and Olsen, G.J. 1986. Archaebacterial phylogeny: perspectives on the urkingdoms. Systematic and Applied Microbiology, 7:161177.Google Scholar
Worms, D. and Weiner, S. 1986. Mollusk shell organic matrix: Fourier transform infrared study of the acidic macromolecules. Journal of Experimental Zoology, 237:1120.Google Scholar
Wyckoff, R.W.G. 1972. The Biochemistry of Animal Fossils. Scientechnica, Bristol.Google Scholar
Wyles, J.S., Kunkel, J.G. and Wilson, A.C. 1983. Birds, behavior and anatomical evolution. Proceedings of the National Academy of Sciences, USA, 80:43944397.Google Scholar
Zimmer, R.L. 1973. Morphological and developmental affinities of the lophophorates, pp. 593599. In Larwood, G.P., ed., Academic Press, NY.Google Scholar
Zuckerkandl, E. and Pauling, L. 1962. Molecular disease, evolution, and genetic heterogeneity, pp. 189225. In Kasha, M. and Pullman, B., eds., Horizons in Biochemistry. Academic Press, New York.Google Scholar
Zuckerkandl, E. and Pauling, L. 1965. Evolutionary divergence and convergence in proteins, p. 97116. In Bryson, V. and Vogel, H.J., eds., Evolving Genes and Proteins. Academic Press, New York.Google Scholar
Zuker, C.S., Montell, C., Jones, K., Laverty, T., and Rubin, G.M. 1987. A rhodopsin gene expressed in photoreceptor cell R7 of the Drosophila eye: homologies with other signal-transducing molecules. Journal of Neuroscience, 7:15501557.Google Scholar
Zundel, M. and Rohmer, M. 1985. Prokaryotic triterpenoids. 1. 3B-methylhopanoids from Acetobacter sp. and Methylococcus capsulatus . European Journal of Biochemistry, 150:2327.Google Scholar