The aim of this study was to investigate whether there was a relationship between growth of sunflower seedlings at 15°C in the dark and activities of enzymes involved in scavenging of reactive oxygen species (ROS), especially superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR), or in production of free radicals, namely lipoxygenase (LOX). Untreated control seeds were compared with seeds exposed to accelerated ageing (5 d at 45°C and 100% relative humidity), osmopriming (7 d at 15°C with a polyethylene glycol (PEG) solution at –2 MPa) and accelerated ageing followed by priming. Accelerated ageing decreased seed germinability and slowed down hypocotyl growth, whereas priming resulted in an increase in germination rate and enhanced seedling development. Osmopriming of aged seeds almost completely restored the initial rate of germination and seedling growth. The activity of all the enzymes studied increased during seed germination and seedling development, except that of SOD. Seed imbibition or radicle protrusion were related mainly with an increase in CAT activity and, to a lesser extent, in GR activity. Increase of LOX activity was clearly associated with the onset of hypocotyl elongation. However, in all cases, malondialdehyde measurements did not reveal intense lipid peroxidation. Priming induced a marked stimulation of CAT and GR during seed imbibition or very early during seedling development, as compared to the control seedlings and particularly to the seedlings generated by aged seeds. Hydrogen peroxide (H2O2) contents of seeds and seedlings were closely correlated to the activities of CAT and GR and to the kinetics of seedling development. The results obtained establish a clear relationship between sunflower seed vigour and ROS scavenging.