Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T07:00:56.590Z Has data issue: false hasContentIssue false

Using automated sanding to homogeneously break seed dormancy in black locust (Robinia pseudoacacia L., Fabaceae)

Published online by Cambridge University Press:  05 June 2017

Xavier P. Bouteiller
Affiliation:
Biogeco, INRA, Université de Bordeaux, 33615 Pessac, France
Annabel J. Porté*
Affiliation:
Biogeco, INRA, Université de Bordeaux, 33615 Pessac, France
Stéphanie Mariette
Affiliation:
Biogeco, INRA, Université de Bordeaux, 33615 Pessac, France
Arnaud Monty
Affiliation:
Gembloux Agro-bio Tech, Université de Liège, Gembloux, Belgique
*
*Correspondence Email: [email protected]

Abstract

Physical dormancy of Robinia pseudoacacia seeds makes it a challenge for scientists and forest managers to obtain a homogeneous germination for larger seed samples. Water imbibition of the seeds can be achieved through manual piercing of the seed coat, but this method remains time consuming and heterogeneous. We tested several ecologically friendly methods to break seed dormancy, including manual pin puncture, water soaking, oven dry-heating (two temperatures) and sanding. Sanding was performed using an automatic grinder to control shaking duration (three durations) and get a homogeneous scraping of the coat. All methods, except dry-heating, resulted in successful dormancy breaking; water soaking was the least efficient method, attaining 57% germination. Sanding proved to be as efficient as puncturing (97%) but long duration sanding (10 or 15 min) could damage cotyledons, which would impede further development of the plant. Short-time sanding (5 min) proved to be the best method to reach high total germination and healthy (undamaged cotyledon) seedlings, and was successfully applied to 500 seeds. The reference puncture method and the automatic sanding were also tested on seeds of nine Fabaceae species and proved to be efficient for some species. Automated sanding can thus be used as a standard to break physical dormancy of black locust or other Fabaceae seeds to allow further comparative studies of plant populations or genotypes.

Type
Technical Update
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

§

These authors contributed equally to this work.

References

Abudureheman, B., Liu, H., Zhang, D. and Guan, K. (2014) Identification of physical dormancy and dormancy release patterns in several species (Fabaceae) of the cold desert. Seed Science Research 24, 133145.Google Scholar
Ali, H.H., Tanveer, A., Nadeem, M.A. and Asghar, H.N. (2011) Methods to break seed dormancy of Rhynchosia capitata, a summer annual weed. Chilean Journal of Agricultural Research 71, 483487.Google Scholar
Alves de Oliveira, D., Ferreira Nunes, Y.R., Almeida Rocha, E., Fagundes Braga, R., Silva Pimenta, M.A. and Magalhães Veloso, M.D. (2008) Potencial germinativo de sementes de fava d'anta (Dimorphandra mollis Benth. – Fabaceae: Mimosoideae) sob diferentes procedencias, datas de coleta e tratamentos de escarificaçao. Revista Arvore 32, 10011009.Google Scholar
Archontoulis, S.V. and Miguez, F.E. (2015) Non-linear regression models and applications in agricultural research. Agronomy Journal 107, 786798.Google Scholar
Argel, P.J. and Paton, C.J. (1999) Overcoming legume hardseedness, pp. 247259 in Loch, D.S. and Ferguson, J.E. (eds), Forage Seed Production, volume 2: Tropical and Subtropical Species, Wallingford, UK, CABI International.Google Scholar
Barcelo Gomes, M., Assis de Faria, A., Santos Cerqueira, D. and Lima Bailão, L. (2013) Avaliação de métodos para a superação de dormência de sementes de jatobá (Hymenaea courbaril L.). Revista Eletrônica Interdisciplinar 1, 69.Google Scholar
Basbag, M., Aydin, A. and Ayzit, D. (2010) The effect of different temperatures and durations on the dormancy breaking of black locust (Robinia pseudoacacia L.) and honey locust (Gleditsia triacanthos L.) seeds. Notulae Scientia Biologicae 2, 125128.Google Scholar
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.Google Scholar
Baskin, J.M., Baskin, C.C. and Li, X. (2000) Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology 15, 139152.Google Scholar
Basnou, C. (2006) Robinia pseudoacacia factsheet. Retrieved from: http://www.europe-aliens.org/speciesFactsheet.do?speciesId=11942 Google Scholar
Bonner, F.T. and Karrfalt, R.P. (2008) The woody plant seed manual. USDA Agricultural Handbook 727, 11223.Google Scholar
Campos Dayrell, R.L., Gonçalves-Alvim, S.D.J., Negreiros, D., Fernandes, G.W. and Oliveira Silveira, F.A. (2015) Environmental control of seed dormancy and germination of Mimosa calodendron (Fabaceae): implications for ecological restoration of a highly threatened environment. Brazilian Journal of Botany 38, 395399.Google Scholar
Cierjacks, A., Kowarik, I., Joshi, J., Hempel, S., Ristow, M., von der Lippe, M. and Weber, E. (2013) Biological flora of the british isles: Robinia pseudoacacia . Journal of Ecology 101, 16231640.Google Scholar
CRPF (2007) Le robinier faux-acacia. Retrieved from: http://www.crpf-poitou-charentes.fr/IMG/pdf/robinier.pdf Google Scholar
Dickie, I.A., Bennett, B.M.B., Burrow, L.E., Nuñez, M.A., Peltzer, D.A., Porté, A.J., Richardson, D.M., Rejmánek, M., Rundel, P.W. and van Wilgen, B.W. (2014) Conflicting values: ecosystem services and invasive tree management. Biological Invasions 16, 705719.Google Scholar
Dini-Papanastasi, O., Kostopoulou, P. and Radoglou, K. (2012) Effects of seed origin, growing medium and mini-plug density on early growth and quality of black locust (Robinia pseudoacacia [L.]) seedlings. Journal of Forest Science 58, 820.Google Scholar
Dünisch, O., Richter, H.-G. and Koch, G. (2010) Wood properties of juvenile and mature heartwood. Wood Science and Technology 44, 301313.Google Scholar
Ferreras, A.E., Funes, G. and Galetto, L. (2015) The role of seed germination in the invasion process of Honey locust (Gleditsia triacanthos L., Fabaceae): comparison with a native confamilial. Plant Species Biology 30, 126136.Google Scholar
Funes, G. and Venier, P. (2006) Dormancy and germination in three Acacia (Fabaceae) species in central Argentina. Seed Science Research 16, 7782.Google Scholar
Giuliani, C., Lazzaro, L., Mariotti Lippi, M. and Foggi, B. (2015) Temperature-related effects on the germination capacity of black locust (Robinia pseudoacacia L., Fabaceae) seeds. Folia Geobotanica 50, 275282.Google Scholar
González-Castañeda, J., Angoa-Pérez, M.V., Frías-Hernández, J.T., Olalde-Portugal, V., Flores-Ancira, E., Terrones-Rincón, T.R.L., Van Cleemput, O. and Dendooven, L. (2004) Germination of seeds of huisache (Acacia schaffneri) and catclaw (Mimosa monancistra) as affected by sulphuric acid and mechanical scarification and subsequent growth and survival in a greenhouse and field experiment. Seed Science and Technology 32, 727738.Google Scholar
Graham, P.H. and Vance, C.P. (2003) Legumes: importance and constraints to greater use. Plant Physiology 131, 872877.Google Scholar
Jayasuriya, K.M.G.G., Wijetunga, A.S.T.B., Baskin, J.M. and Baskin, C.C. (2013) Seed dormancy and storage behaviour in tropical Fabaceae: a study of 100 species from Sri Lanka. Seed Science Research 23, 257269.Google Scholar
Jøker, D. (2002) Dalbergia sissoo Roxb. ex DC. Retrieved from: http://dfsc.dk/pdf/Seedleaflets/Dalbergia%20sissoo_65_int.pdf Google Scholar
Khan, M. and Khan, R. (1992) Woody Plant Seed Manual (Pakistan). Retrieved from: http://pdf.usaid.gov/pdf_docs/PNABW321.pdf Google Scholar
Kiernan, K., Tao, J. and Gibbs, P. (2012) Tips and strategies for mixed modeling with SAS/STAT® procedures. SAS Global Forum 2012, 3322012.Google Scholar
Kimura, E. and Islam, M.A. (2012) Seed scarification methods and their use in forage legumes. Research Journal of Seed Science 5, 3850.Google Scholar
Kurokochi, H., Toyama, K. and Hogetsu, T. (2010) Regeneration of Robinia pseudoacacia riparian forests after clear-cutting along the Chikumagawa river in Japan. Plant Ecology 210, 3141.Google Scholar
Manzone, M., Bergante, S. and Facciotto, G. (2015) Energy and economic sustainability of woodchip production by black locust (Robinia pseudoacacia L.) plantations in Italy. Fuel 140, 555560.Google Scholar
Martins de Mesquita Matos, J., Oliveira Ramos, K.M., de Carvalho Cristo Martins, R., Vasconcelos de Oliveira, D. and Pereira Martins, A. (2014) Estudo das técnicas de superação da dormência das sementes de Enterolobium contoritisiliquum (vell.) Morong. Heringeriana 4, 6064.Google Scholar
Masaka, K. and Yamada, K. (2009) Variation in germination character of Robinia pseudoacacia L. (Leguminosae) seeds at individual tree level. Journal of Forest Research 14, 167177.Google Scholar
Minost, C. (1997) Soybean. Retrieved from https://www7.inra.fr/hyppz/CULTURES/6c---000.htm Google Scholar
Morimoto, J., Kominami, R. and Koike, T. (2010) Distribution and characteristics of the soil seed bank of the black locust (Robinia pseudoacacia) in a headwater basin in northern Japan. Landscape and Ecological Engineering 6, 193199.Google Scholar
Murali, K.S. (1997) Patterns of seed size, germination and seed viability of tropical tree species in Southern India. Biotropica 29, 271279.Google Scholar
Nogueira Camargos, V., Moreira de Carvalho, M.L., Vieira de Araújo, D. and Linhares Magalhães, F.H. (2008) Superação da dormência e avaliação da qualidade fisiológica de sementes de Sesbania virgata . Ciência e Agrotecnologia, Lavras 32, 18581865.Google Scholar
Patanè, C. and Gresta, F. (2006) Germination of Astragalus hamosus and Medicago orbicularis as affected by seed-coat dormancy breaking techniques. Journal of Arid Environments 67, 165173.Google Scholar
Rejmánek, M. and Richardson, D.M. (2013) Trees and shrubs as invasive alien species – 2013 update of the global database. Diversity and Distributions 19, 10931094.Google Scholar
Richardson, D.M. and Rejmánek, M. (2011) Trees and shrubs as invasive alien species – a global review. Diversity and Distributions 17, 788809.Google Scholar
Ritz, C., Pipper, C.B. and Streibig, J.C. (2013) Analysis of germination data from agricultural experiments. European Journal of Agronomy 45, 16.Google Scholar
Singh, D.P., Hooda, M.S. and Bonner, F.T. (1991) An evaluation of scarification methods for seeds of two leguminous trees. New Forests 5, 139145.Google Scholar
Statwick, J.M. (2016) Germination pretreatments to break hard-seed dormancy in Astragalus cicer L. (Fabaceae). PeerJ 4, e2621.Google Scholar
Teketay, D. (1996) The effect of different pre-sowing seed treatments, temperature and light on the germination of five Senna species from Ethiopia. New Forest 11, 155171.Google Scholar
Torres, M. and Frutos, G. (1989) Analysis of germination curves of aged fennel seeds by mathematical models. Environmental and Experimental Botany 29, 409415.Google Scholar
Townsend, C.E. and McGinnies, W.J. (1972) Establisment of nine forage legumes in the Central Great Plains. Agronomy Journal 64, 699702.Google Scholar
Turner, S.R. and Dixon, K.W. (2009) Seed dormancy and germination in the Australian baobab, Adandonia gregorrii F. Muell. Seed Science Research 19, 261266.Google Scholar
Ventura de Souza, T., Heinig Voltolini, C., Santos, M. and Silveira Paulilo, M.T. (2012) Water absorption and dormancy-breaking requirements of physically dormant seeds of Schizolobium parahyba (Fabaceae – Caesalpinioideae). Seed Science Research 22, 169176.Google Scholar
Supplementary material: File

Bouteiller supplementary material

Bouteiller supplementary material

Download Bouteiller supplementary material(File)
File 1.5 MB