Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T08:15:31.277Z Has data issue: false hasContentIssue false

Tomato mutants sensitive to abiotic stress display different abscisic acid content and metabolism during germination

Published online by Cambridge University Press:  01 December 2008

Andrea Andrade
Affiliation:
Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800Río Cuarto, Argentina
Oscar Masciarelli
Affiliation:
Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800Río Cuarto, Argentina
Sergio Alemano
Affiliation:
Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800Río Cuarto, Argentina
Virginia Luna
Affiliation:
Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800Río Cuarto, Argentina
Guillermina Abdala*
Affiliation:
Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800Río Cuarto, Argentina
*
*Correspondence Fax: 0054-358-4676230 Email: [email protected]

Abstract

We report the determination of abscisic acid (ABA) and its metabolites, phaseic acid (PA), dihydrophaseic acid (DPA) and ABA glucose ester (ABA-GE), in non-dormant dry and imbibed seeds of tomato (Solanum lycopersicum Mill.) cv. Moneymaker (wild type), and its tss1, tss2 and tos1 mutants. High ABA in dry seeds may originate from ABA accumulation in the sheath tissue, which was in contact with an ABA-containing medium, the endocarpus. The highest germination percentages at 72 h, observed in tss1 and tss2, coincided with minimal ABA content. Wild-type and mutant seeds showed different ABA and catabolic patterns, and these were correlated with their sensitivity to abiotic stress. Whereas dry seeds showed a high basal ABA, imbibed seeds showed higher ABA metabolite content, particularly DPA. The dramatic decrease of ABA following seed imbibition suggests an activation of ABA catabolism during the early stages of the germination process. The observed variation of ABA metabolites among dry and imbibed seeds of Solanum lycopersicum cv. Moneymaker and its tss1, tss2 and tos1 mutants shows that ABA metabolism is differentially regulated in these genotypes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali-Rachedi, S., Bouinot, D., Wagner, M-H., Bonnet, M., Sotta, B., Grappin, P. and Jullien, M. (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219, 479488.CrossRefGoogle ScholarPubMed
Berry, T. and Bewley, D. (1992) A role for the surrounding fruit tissues in preventing the germination of tomato (Lycopersicon esculentum) seeds. Plant Physiology 100, 951957.CrossRefGoogle ScholarPubMed
Borsani, O., Cuartero, J., Fernández, J.A., Valpuesta, V. and Botella, M.A. (2001) Identification of two loci in tomato reveals distinct mechanisms for salt tolerance. Plant Cell 13, 873888.CrossRefGoogle ScholarPubMed
Borsani, O., Cuartero, J., Fernández, J.A., Valpuesta, V. and Botella, M.A. (2002) Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity. Plant Journal 32, 905914.CrossRefGoogle ScholarPubMed
Chiwocha, S., Abrams, S., Ambrose, S., Cutler, A., Loewen, A., Ross, A. and Kermode, A. (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography–electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant Journal 35, 405417.CrossRefGoogle ScholarPubMed
Chiwocha, S., Cutler, A., Abrams, S.R., Ambrose, S.J., Yang, J., Ross, A.R.S. and Kermode, A.R. (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant Journal 42, 3548.CrossRefGoogle ScholarPubMed
Cutler, A.J. and Krochko, J.E. (1999) Formation and breakdown of ABA. Trends in Plant Science 4, 472478.CrossRefGoogle ScholarPubMed
Delk, N., Johnson, K., Chowdhury, N. and Braam, J. (2005) CLM24 regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, day length, and ion stress. Plant Physiology 139, 240253.CrossRefGoogle Scholar
Dietz, K-J., Sauter, A., Wichert, K., Messdaghi, D. and Hartung, W. (2000) Extracellular β-glucosidase activity in barley involved in the hydrolysis of ABA glucose conjugate in leaves. Journal of Experimental Botany 51, 937944.CrossRefGoogle ScholarPubMed
Downie, B., Gurusinghe, S. and Bradford, K. (1999) Internal anatomy of individual tomato seeds: relationship to abscisic acid and germination physiology. Seed Science Research 9, 117128.CrossRefGoogle Scholar
Grappin, P., Bouinot, D., Sotta, B., Miginiac, E. and Jullien, M. (2000) Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210, 279285.CrossRefGoogle ScholarPubMed
Groot, S.P.C. and Karssen, C.M. (1992) Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta 171, 525531.CrossRefGoogle Scholar
Hilhorst, H.W.M. (1995) A critical update on seed dormancy. I: primary dormancy. Seed Science Research 5, 6173.CrossRefGoogle Scholar
Jacobsen, J.V., Pearce, D.W., Poole, A.T., Pharis, R. and Mander, L.N. (2002) Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiologia Plantarum 115, 428441.CrossRefGoogle ScholarPubMed
Kushiro, T., Okamoto, M., Nakabayashi, K., Yamagishi, K., Kitamura, S., Asami, T., Hirai, N., Koshiba, T., Kamiya, Y. and Nambara, E. (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO Journal 23, 16471656.CrossRefGoogle Scholar
Lee, K.H., Piao, H.L., Kim, H-Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I-J. and Hwang, I. (2006) Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126, 11091120.CrossRefGoogle ScholarPubMed
Lefebvre, V., North, H., Frey, A., Sotta, B., Seo, M., Okamoto, M., Nambara, E. and Marion-Poll, A. (2006) Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant Journal 45, 309319.CrossRefGoogle ScholarPubMed
Leung, J. and Giraudat, J. (1998) Abscisic acid signal transduction. Annual Review of Plant Physiology and Plant Molecular Biology 49, 199222.CrossRefGoogle ScholarPubMed
Luna, M.V., Soriano, M.D., Bottini, R., Sheng, C. and Pharis, R. (1993) Levels of endogenous gibberellins, abscisic acid, indol-3-acetic acid and naringenin during dormancy of peach flower buds. Acta Horticulturae 329, 265267.CrossRefGoogle Scholar
Millar, A., Jacobsen, J., Ross, J., Helliwell, C., Poole, A., Scofield, G., Reid, J. and Gubler, F. (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant Journal 45, 942954.CrossRefGoogle ScholarPubMed
Moller, S.G. and Chua, N.H. (1999) Interactions and intersections of plant signaling pathways. Journal of Molecular Biology 293, 219234.CrossRefGoogle ScholarPubMed
Nambara, E. and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annual Review of Plant Physiology and Plant Molecular Biology 56, 165185.CrossRefGoogle ScholarPubMed
Ni, B-R. and Bradford, K.J. (1993) Germination and dormancy of abscisic acid- and gibberellin-deficient mutant tomato (Lycopersicum esculentum) seeds. Plant Physiology 101, 607617.CrossRefGoogle Scholar
Okamoto, M., Kuwahara, A., Seo, M., Kushiro, T., Asami, T., Hirai, N., Kamiya, Y., Koshiba, T. and Nambara, E. (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiology 141, 97107.CrossRefGoogle Scholar
Sauter, A., Abrams, S.R. and Hartung, W. (2002) Structural requirements of abscisic acid (ABA) and its impact on water flow during radial transport of ABA analogues through maize roots. Plant Growth Regulation 21, 5059.CrossRefGoogle ScholarPubMed
Setha, S., Kondo, S., Hirai, N. and Ohigashi, H. (2005) Quantification of ABA and its metabolites in sweet cherries using deuterium-labeled internal standards. Plant Growth Regulation 45, 183188.CrossRefGoogle Scholar
Todoroki, Y., Hirai, N. and Ohigashi, H. (2000) Analysis of isomerization process of 8′-hydroxyabscisic acid and its 3′-fluoronated analog in aqueous solutions. Tetrahedron 56, 16491653.CrossRefGoogle Scholar
Valpuesta, V. and Botella, M.A. (2007) Identificación de genes esenciales para la tolerancia a estrés hídrico y salino. Laboratorio de Bioquímica y Biotecnología Vegetal. Universidad de Málaga. España. Available athttp://www.bmbq.uma.es/lbbv/tomate.htm (accessed April 2007).Google Scholar
Walton, D.C. and Li, Y. (1995) Abscisic acid biosynthesis and metabolism. pp. 140157in Davies, P.J. (Ed.) Plant hormones: physiology, biochemistry and molecular biology. Norwell, MA, Kluwer.CrossRefGoogle Scholar
Wang, Z., Mambelli, S. and Setter, T. (2002) Abscisic acid catabolism in maize kernels in response to water deficit at early endosperm development. Annals of Botany 90, 623630.CrossRefGoogle ScholarPubMed
Xu, Z-J., Nakajima, M., Suzuki, Y. and Yamaguchi, I. (2002) Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from Adzuki bean seedlings. Plant Physiology 129, 12851295.CrossRefGoogle ScholarPubMed
Zaharia, L.I., Walker-Simmons, M.K., Rodríguez, C.N. and Abrams, S.R. (2005) Chemistry of abscisic acid, abscisic acid catabolites and analogs. Journal of Plant Growth Regulation 24, 274284.CrossRefGoogle Scholar
Zeevaart, J.A.D., Rock, C.D., Fantauzzo, F., Heath, T.G. and Gage, D.A. (1991) Metabolism of abscisic acid and its physiological implications. pp. 3952in Davies, W.J.; Jones, H.G. (Eds) Abscisic acid: physiology and biochemistry. Oxford, BIOS Scientific.Google Scholar
Zhou, R., Squires, T.M., Ambrose, S.J., Abrams, S.R., Ross, A.R.S. and Cutler, A. (2003) Rapid extraction of abscisic acid and its metabolites for liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1010, 7585.CrossRefGoogle ScholarPubMed
Zhou, R., Cutler, A., Ambrose, S.J., Galka, M.M., Nelson, K.M., Squires, T.M., Loewen, M.K., Juadhav, A.S., Ross, A.R., Taylor, D.C. and Abrams, S.R. (2004) A new abscisic acid catabolic pathway. Plant Physiology 134, 361369.CrossRefGoogle ScholarPubMed
Zhu, J-K., Liu, J. and Xiong, L. (1998) Genetic analysis of salt tolerance in Arabidopsis thaliana: evidence of a critical role for potassium nutrition. Plant Cell 10, 11811192.CrossRefGoogle ScholarPubMed