Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T22:33:33.459Z Has data issue: false hasContentIssue false

Structural aspects of dormancy in quinoa (Chenopodium quinoa): importance and possible action mechanisms of the seed coat

Published online by Cambridge University Press:  06 May 2015

Diana Ceccato*
Affiliation:
Banco Base de Germoplasma, Instituto de Recursos Biológicos, CIRN, CNIA-INTA, B1686EYR Hurlingham, Buenos Aires, Argentina
Daniel Bertero
Affiliation:
Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires (UBA), C1417DSE Buenos Aires, Argentina; Cátedra de Producción Vegetal
Diego Batlla
Affiliation:
Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires (UBA), C1417DSE Buenos Aires, Argentina; Cátedra de Cerealicultura
Beatriz Galati
Affiliation:
Cátedra de Botánica General, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSE Buenos Aires, Argentina
*
*Correspondence E-mail: [email protected]

Abstract

Two possible sources of resistance to pre-harvest sprouting were evaluated in quinoa. They showed dormancy at harvest and significant variations in dormancy level in response to environmental conditions experienced during seed development. The aims of this work were to evaluate the importance of seed coats in the regulation of dormancy in this species, to investigate possible mechanisms of action and to assess association of seed coat properties with changes in dormancy level caused by the environment. Accessions Chadmo and 2-Want were grown under field conditions on different sowing dates during 2 years. Seed coats were manipulated and seed germination was evaluated at different temperatures. Seed coat perforation before incubation led to faster dormancy loss in both accessions. This effect decreased with delayed sowing date, and seeds expressed a level of dormancy not imposed by coats. This suggests the presence of embryo dormancy in the genus Chenopodium. Seeds of the accession 2-Want had a significantly thinner seed coat at later sowing dates, associated with a decreasing coat-imposed dormancy, but this pattern was not detected in Chadmo. The seed coat acts as a barrier to the release of endogenous abscisic acid (ABA) in quinoa, suggested by the increase in germination and a higher amount of ABA leached from perforated seeds. ABA is able to leach from seeds with an intact seed coat, suggesting that differences in seed coat thickness may allow the leakage of different amounts of ABA. This mechanism may contribute to the observed differences in dormancy level, either between sowing dates or between accessions.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benech-Arnold, R.L. (2004) Inception, maintenance and termination of dormancy in grain crops: physiology, genetics and environmental control. pp. 169198 in Benech-Arnold, R.L.; Sánchez, R.A. (Eds) Handbook of seed physiology: Applications to agriculture. Binghamton, New York, The Haworth Press.Google Scholar
Bianco, J., Garello, G. and Le Page Degivry, M.T. (1997) De novo ABA synthesis and expression of seed dormancy in a gymnosperm: Pseudotsuga menziesii . Plant Growth Regulation 21, 115119.CrossRefGoogle Scholar
Bodrone, M.P. (2014) Cambios en el nivel de dormición de semillas de girasol en función del ambiente térmico explorado durante la etapa de desarrollo-maduración de los frutos y el almacenaje post-cosecha. MSc thesis, Facultad de Agronomía, Universidad de Buenos Aires, Argentina.Google Scholar
Bois, J.P., Winkel, T., Lhommee, J., Rafaillac, J.P. and Rocheteau, A. (2006) Response of some Andean cultivars of quinoa (Chenopodium quinoa Willd.) to temperature: effects on germination, phenology, growth and freezing. European Journal of Agronomy 25, 299308.CrossRefGoogle Scholar
Bruno, M.C. (2005) Domesticado o silvestre? Resultados de la investigación de semillas de Chenopodium Chiripa, Bolivia (1500–100 A.C.). Textos Antropológicos 15, 3950.Google Scholar
Bruno, M.C. (2006) A morphological approach to documenting the domestication of Chenopodium in the Andes. pp. 3245 in Zeder, M.; Bradley, D.; Emshwiller, E.; Smith, B. (Eds) Documenting domestication: New genetic and archaeological paradigms. California, University of California Press.Google Scholar
Ceccato, D.V., Bertero, H.D. and Batlla, D. (2011) Environmental control of dormancy of quinoa (Chenopodium quinoa) seeds. Two potential genetic resources for pre-harvest sprouting tolerance. Seed Science Research 21, 133141.Google Scholar
Debeaujon, I., Lepiniec, L., Pourcel, L. and Routaboul, J.M. (2007) Seed coat development and dormancy. pp. 2543 in Bradford, K.J.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Oxford, UK, Blackwell Publishing.CrossRefGoogle Scholar
Di Mauro, M.F., Iglesias, M.J., Arce, D.P., Valle, E.M., Benech-Arnold, R.L., Tsuda, K., Yamazaki, K., Casalongué, C.A. and Godoy, A.V. (2012) MBF1s regulate ABA-dependent germination of Arabidopsis seed. Plant Signaling & Behavior 7, 188192.CrossRefGoogle Scholar
Dorne, A.J. (1981) Variation in seed germination inhibition of Chenopodium bonus-henricus in relation to altitude of plant growth. Canadian Journal of Botany 59, 18931901.Google Scholar
Fenner, M. (1991) The effects of the parent environment on seed germinability. Seed Science Research 1, 7584.CrossRefGoogle Scholar
Feurtado, J.A., Ren, C., Ambrose, S.J., Cutler, A.J., Ross, A.R.S., Abrams, S.R. and Kermode, A.R. (2008) The coat-enhanced dormancy mechanism of western white pine (Pinus monticola Dougl. ex D. Don) seeds is mediated by abscisic acid homeostasis and mechanical restraint. Seed Science and Technology 36, 283300.CrossRefGoogle Scholar
Finch-Savage, W.E. and Leubner-Metzger, G. (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.Google Scholar
Fonseca, A.E. and Sánchez, R.A. (2000) Efecto de la temperatura durante el llenado de grano sobre la germinación de semillas de girasol (Heliantus annuus L.). pp. 216–217 in Resúmenes de la XXIII Reunión Argentina de Fisiología Vegetal, 27–30 November, Córdoba, Argentina.Google Scholar
Geerts, S., Raes, D., García, M., Del Castillo, C. and Buytaert, W. (2006) Agro-climatic suitability mapping for crop production in the Bolivian Altiplano: A case study for quinoa. Agricultural and Forest Meteorology 139, 399412.CrossRefGoogle Scholar
Gremillion, K.J. (1993a) Crop and weed in prehistoric eastern North America: the Chenopodium example. American Antiquity 58, 496509.Google Scholar
Gremillion, K.J. (1993b) The evolution of seed morphology in domesticated Chenopodium: an archaeological case study. Journal of Ethnobiology 13, 149169.Google Scholar
Gualano, N.A. and Benech-Arnold, R.L. (2009) Predicting pre-harvest sprouting susceptibility in barley: looking for ‘sensitivity windows’ to temperature throughout grain filling in various commercial cultivars. Field Crops Research 114, 3544.Google Scholar
Hilhorst, H.W.M. (2007) Definitions and hypotheses of seed dormancy. pp. 5071 in Bradford, K.J.; Nonogaki, H. (Eds) Seed development, dormancy and germination. Oxford, UK, Blackwell Publishing.CrossRefGoogle Scholar
Jacobsen, S.E. and Bach, A.P. (1998) The influence of temperature on seed germination rate in quinoa (Chenopodium quinoa Willd.). Seed Science and Technology 26, 515523.Google Scholar
Jacques, R. (1968) Action de la lumière par l'intermédiaire du phytochrome sur la germination, la croissance et le développement de Chenopodium polyspermum L. Physiologie Végétale 6, 137164.Google Scholar
Karssen, C.M. (1970) The light promoted germination of the seeds of Chenopodium album L. III. Effect of the photoperiod during growth and development of the plants on the dormancy of the produced seeds. Acta Botanica Neerlandica 19, 8194.Google Scholar
Linkies, A. and Leubner-Metzger, G. (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Reports 31, 253270.Google Scholar
López Fernández, M.P. (2008) Longevidad de las semillas de nueve cultivares de Chenopodium quinoa Willd., procedentes de regiones contrastantes: Ecuación de la viabilidad y rol de las cubiertas seminales. Biology degree thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.Google Scholar
Mendiondo, G.M., Leymarie, J., Farrant, J.M., Corbineau, F. and Benech-Arnold, R.L. (2010) Differential expression of abscisic acid metabolism and signalling genes induced by seed-covering structures or hypoxia in barley (Hordeum vulgare L.) grains. Seed Science Research 20, 6977.CrossRefGoogle Scholar
Ministério da Agricultura e Reforma Agrária . (1992) Regras para análise de sementes . Brasília, Secretaria Nacional de Defesa Agropecuária, Departamento Nacional de Defesa Vegetal, Coordenação de Laboratório Vegetal.Google Scholar
Nonogaki, H (2006) Seed germination–the biochemical and molecular mechanism. Breeding Science 56, 93105.Google Scholar
Notivol, E., García-Gil, M.R., Alía, R. and Savolainen, O. (2007) Genetic variation of growth rhythm traits in the limits of a latitudinal cline in Scots pine. Canadian Journal of Forestry Research 37, 540551.Google Scholar
O'Brien, T.P. and McCully, M.E. (1981) The study of plant structure. Principles and selected methods. Melbourne, Termarcarphi.Google Scholar
Pourrat, Y. and Jacques, R. (1975) The influence of photoperiodic conditions received by the mother plant on morphological and physiological characteristics of Chenopodium polyspermum L. seeds. Plant Science Letters 4, 273279.Google Scholar
Prego, I., Maldonado, S. and Otegui, M. (1998) Seed structure and localization of reserves in Chenopodium quinoa . Annals of Botany 82, 481488.CrossRefGoogle Scholar
Quarrie, S.A., Whitford, P.N., Appleford, N.E., Wang, T.L., Cook, S.K., Henson, I.E. and Loveys, B.R. (1988) A monoclonal antibody to (S)-abscisic acid: its characterisation and use in a radioimmunoassay for measuring abscisic acid in crude extracts of cereal and lupin leaves. Planta 173, 330339.Google Scholar
Ren, C. and Kermode, A.R. (1999) Analyses to determine the role of the megagametophyte and other seed tissues in dormancy maintenance of yellow cedar (Chamaecyparis nootkatensis) seeds: morphological, cellular and physiological changes following moist chilling and during germination. Journal of Experimental Botany 50, 14031419.Google Scholar
Rodríguez, M.V., Mendiondo, G.M., Maskin, L., Gudesblat, G.E., Iusem, N.D. and Benech-Arnold, R.L. (2009) Expression of ABA signaling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages. Annals of Botany 104, 975985.CrossRefGoogle ScholarPubMed
Steinbach, H.S., Benech-Arnold, R.L., Kristof, G., Sánchez, R.A. and Marcucci-Poltri, S. (1995) Physiological basis of pre-harvest sprouting resistance in Sorghum bicolor (L.) Moench. ABA levels and sensitivity in developing embryos of sprouting-resistant and -susceptible varieties. Journal of Experimental Botany 46, 701709.CrossRefGoogle Scholar
Sukhorukov, A. and Zhang, M. (2013) Fruit and seed anatomy of Chenopodium and related genera (Chenopodioideae, Chenopodiaceae/Amaranthaceae): implications for evolution and taxonomy. PLoS ONE 8, e61906.CrossRefGoogle ScholarPubMed
Wang, M., Heimovaara-Dijkstra, S. and Van Duijn, B. (1995) Modulation of germination of embryos isolated from dormant and non dormant barley grains by manipulation of endogenous abscisic acid. Planta 195, 586592.Google Scholar
Williams, J.T. (1963) Biological flora of the British Isles. Chenopodium album L. List of Britain Vascular Plants 154, 711725.Google Scholar