Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T16:00:54.097Z Has data issue: false hasContentIssue false

The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal

Published online by Cambridge University Press:  26 September 2011

Tamara L. Western*
Affiliation:
Biology Department and Developmental Biology Research Initiative, McGill University, 1205 avenue Docteur Penfield, Montreal, QC H3A 1B1, Canada
*
*Correspondence Fax: 1-514-398-5069 Email: [email protected]

Abstract

The production of hydrophilic mucilages by the seed coat or pericarp, which are released upon seed hydration, is a commonly found adaptation in angiosperms, known as myxodiaspory. These are composed primarily of pectins and hemicelluloses that undergo substantive swelling upon hydration. Synthesized in the Golgi apparatus and secreted to an apoplastic space via secretory vesicles, mucilages can also contain cellulose microfibrils or cellulosic fibres that are synthesized at the plasma membrane in association with microtubules. Investigation of mucilage production in, and differentiation of, the mucilage secretory cells of the genetic model plant Arabidopsis thaliana has identified a number of regulatory genes and enzymes involved in pectin synthesis and secretion, in muro pectin modification and secondary cell wall synthesis. Studies of the role of mucilages in both a number of species and in Arabidopsis mutants affected in its production suggest that they have multiple ecological roles. These include facilitation of seed hydration, mediation of germination under waterlogged conditions, prevention of seed dispersal or predation by adherence to soil, and promotion of seed dispersal by attachment to animals. The precise role of mucilages appears to be dependent on species and their environmental context.

Type
Review Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abeysekera, R.M. and Willison, J.H.M. (1988) Development of helicoidal texture in the prerelease mucilage of quince (Cydonia oblonga) seed epidermis. Canadian Journal of Botany 66, 460467.CrossRefGoogle Scholar
Anderson, E. and Fireman, M. (1935) The mucilage from psyllium seed, Plantago psyllium L. Journal of Biological Chemistry 109, 437442.CrossRefGoogle Scholar
Anderson, E. and Lowe, H.J. (1947) The composition of flaxseed mucilage. Journal of Biological Chemistry 168, 289297.CrossRefGoogle ScholarPubMed
Anjaneyalu, Y., Khan, M.-R. and Tharanathan, R.N. (1983) An acidic xylan from the capsular polysaccharide complex of Ocimum gratissimum seeds. Carbohydrate Research 116, 8388.CrossRefGoogle Scholar
Anjaneyalu, Y., Khan, M.-R. and Tharanathan, R.N. (1984) An acidic polysaccharide from the seeds of Ocimum adscendens. Phytochemistry 23, 22432245.CrossRefGoogle Scholar
Arsovski, A.A., Popma, T.M., Haughn, G.W., Carpita, N.C., McCann, M.C. and Western, T.L. (2009a) AtBXL1 encodes a bifunctional β-D-xylosidase/ α-L-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. Plant Physiology 150, 12191234.CrossRefGoogle ScholarPubMed
Arsovski, A.A., Villota, M.M., Rowland, O., Subramaniam, R. and Western, T.L. (2009b) MUM ENHANCERS are important for seed coat mucilage production and mucilage secretory cell differentiation in Arabidopsis thaliana. Journal of Experimental Botany 60, 26012612.CrossRefGoogle ScholarPubMed
Arsovski, A.A., Haughn, G.W. and Western, T.L. (2010) Seed coat mucilage cells of Arabidopsis thaliana as a model for plant cell wall research. Plant Signaling and Behavior 5, 16.CrossRefGoogle Scholar
Beeckman, T., De Rycke, R., Viane, R. and Inzé, D. (2000) Histological study of seed coat development in Arabidopsis thaliana. Journal of Plant Research 113, 139148.CrossRefGoogle Scholar
Boesewinkel, F.D. (1980) Development of ovule and testa of Linum usitatissimum L. Acta Botanica Neerlandia 29, 1732.CrossRefGoogle Scholar
Boesewinkel, F.D. and Bouman, F. (1984) The seed: structure. pp. 567610 in Johri, B.M. (Ed.) Embryology of angiosperms. New York, NY, Springer-Verlag.CrossRefGoogle Scholar
Bouman, F. (1975) Integument initiation and testa development in some Cruciferae. Botanical Journal of the Linnean Society 70, 213229.CrossRefGoogle Scholar
Bowman, J.L. and Koornneef, M. (1994) Seed morphology. pp. 398401 in Bowman, J.L. (Ed.) Arabidopsis: an atlas of morphology and development. New York, NY, Springer-Verlag.CrossRefGoogle Scholar
Bui, M., Lim, N., Sijacic, P. and Liu, Z. (2011) LEUNIG_HOMOLOG and LEUNIG regulate seed mucilage extrusion in Arabidopsis. Journal of Integrative Plant Biology 53, 399408.CrossRefGoogle ScholarPubMed
Burn, J.E., Hurley, U.A., Birch, R.J., Arioli, T., Cork, A. and Williamson, R.E. (2002) The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control. Plant Journal 32, 949960.CrossRefGoogle Scholar
Bushway, A., Belyea, P. and Bushway, R. (1981) Chia seed as a source of oil, polysaccharide, and protein. Journal of Food Science 46, 13491356.CrossRefGoogle Scholar
Buth, G.M. and Ara, R. (1981) Seed coat anatomy of some cultivated Brassicas. Phytomorphology 31, 6978.Google Scholar
Caffall, K.H. and Mohnen, D. (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research 344, 18791900.CrossRefGoogle ScholarPubMed
Caffall, K.H., Pattathil, S., Phillips, S.E., Hahn, M.G. and Mohnen, D. (2009) Arabidopsis thaliana T-DNA mutants implicate GAUT genes in the biosynthesis of pectin and xylan in cell walls and seed testa. Molecular Plant 2, 10001014.CrossRefGoogle ScholarPubMed
Campanoni, P. and Blatt, M.R. (2007) Membrane trafficking and polar growth in root hairs and pollen tubes. Journal of Experimental Botany 58, 6574.CrossRefGoogle ScholarPubMed
Cole, R. and Fowler, J. (2006) Polarized growth: maintaining focus on the tip. Current Opinion in Plant Biology 9, 579588.CrossRefGoogle ScholarPubMed
Cui, W., Eskin, N.A.M. and Biliaderis, C.G. (1993) Chemical and physical properties of yellow mustard (Sinapis alba L.) mucilage. Food Chemistry 46, 169176.CrossRefGoogle Scholar
Cui, W., Eskin, N.A.M. and Biliaderis, C.G. (1994a) Fractionation, structural analysis, and rheological properties of water-soluble yellow mustard (Sinapis alba L.) polysaccharides. Journal of Agricultural and Food Chemistry 42, 657664.CrossRefGoogle Scholar
Cui, W., Mazza, G. and Biliaderis, C.G. (1994b) Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. Journal of Agricultural and Food Chemistry 42, 18911895.CrossRefGoogle Scholar
Dean, G.H., Zheng, H., Tewari, J., Huang, J., Young, D.S., Hwang, Y.T., Western, T.L., Carpita, N.C., McCann, M.C., Mansfield, S.D. and Haughn, G.W. (2007) The Arabidopsis MUM2 gene encodes a β-galactosidase required for the production of seed coat mucilage with correct hydration properties. Plant Cell 19, 40074021.CrossRefGoogle ScholarPubMed
Debeaujon, I., Léon-Kloosterziel, K.M. and Koornneef, M. (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122, 403413.CrossRefGoogle ScholarPubMed
Diederichsen, A., Raney, J.P. and Duguid, S.D. (2006) Variation of mucilage in flax seed and its relationship with other seed characters. Crop Science 46, 365.CrossRefGoogle Scholar
Duletiae-Lauševiae, S. and Marin, P.D. (1998) Pericarp structure and myxocarpy in selected genera of Nepetoideae (Lamiaceae). Nordic Journal of Botany 19, 435446.CrossRefGoogle Scholar
Edwards, M.M. (1968) Dormancy in seeds of charlock I. Developmental anatomy of the seed. Journal of Experimental Botany 19, 575582.CrossRefGoogle Scholar
Ellner, S. and Shmida, A. (1981) Why are adaptations for long-range seed dispersal rare in desert annual plants? Oecologia 51, 133144.Google Scholar
Esau, K. (1977) Anatomy of seed plants (2nd edition). Toronto, Wiley.Google Scholar
Eskin, N.A.M. (1992) Effect of variety and geographical location on the incidence of mucilage in canola seeds. Canadian Journal of Plant Science 72, 12231225.CrossRefGoogle Scholar
Fahn, A. (1979) Secretory tissues in plants. New York, NY, Academic Press.Google Scholar
Fahn, A. (1982) Plant anatomy (3rd edition). New York, NY, Pergamon Press.Google Scholar
Fedeniuk, R.W. and Biliaderis, C.G. (1994) Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. Journal of Agricultural and Food Chemistry 42, 240247.CrossRefGoogle Scholar
Fitch, E.A., Walck, J.L. and Hidayati, S.N. (2007) Germinating seeds of Lesquerella perforata and stonensis: substrate effects and mucilage production. Native Plants Journal 8, 410.CrossRefGoogle Scholar
Frey-Wyssling, A. (1976) The plant cell wall (3rd edition). Berlin, Gebr. Borntraeger.Google Scholar
Fuller, P.J. and Hay, M.E. (1983) Is glue production by seeds of Salvia columbariae a deterrent to desert granivores? Ecology 64, 960963.CrossRefGoogle Scholar
García-Fayos, P., Bochet, E. and Cerdà, A. (2010) Seed removal susceptibility through soil erosion shapes vegetation composition. Plant and Soil 334, 289297.CrossRefGoogle Scholar
Garwood, N.C. (1985) The role of mucilage in the germination of cuipo, Cavanillesia platanifolia (H. & B.) H.B.K. (Bombacaceae), a tropical tree. American Journal of Botany 72, 10951105.CrossRefGoogle Scholar
Gonzalez, A., Mendenhall, J., Huo, Y. and Lloyd, A. (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Developmental Biology 325, 412421.CrossRefGoogle ScholarPubMed
Goto, N. (1985) A mucilage polysaccharide secreted from testa of Arabidopsis thaliana. Arabidopsis Information Service 22, 143145.Google Scholar
Gowda, D.C. (1984) Polysaccharide components of the seed-coat mucilage from Hyptis suaveolens. Phytochemistry 23, 337338.CrossRefGoogle Scholar
Grant, G.T., McNab, C., Rees, D.A. and Skerrett, R.J. (1969) Seed mucilages as examples of polysaccharide denaturation. Journal of the Chemical Society D: Chemical Communications, 805806.CrossRefGoogle Scholar
Grubert, M. (1974) Studies on the distribution of myxospermy among seeds and fruits of Angiospermae and its ecological importance. Acta Biologica Venezuelica 8, 315551.Google Scholar
Grubert, M. (1981) Mucilage or gum in seeds and fruits of angiosperms: a review. Munich, Minerva Press.Google Scholar
Guo, Q., Cui, S.W., Wang, Q., Goff, H.D. and Smith, A. (2009) Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids 23, 15421547.CrossRefGoogle Scholar
Gutterman, Y. and Shem-Tov, S. (1997) Mucilaginous seed coat structure of Carrichtera annua and Anastatica heirochuntica from the Negev Desert highlands of Israel, and its adhesion to the soil crust. Journal of Arid Environment 35, 695705.CrossRefGoogle Scholar
Gutterman, Y., Witztum, A. and Heydecker, W. (1973) Studies of the surfaces of desert plant seeds. II. Ecological adaptations of the seeds of Blepharis persica. Annals of Botany 37, 10511055.CrossRefGoogle Scholar
Hamilton, K.N., Ashmore, S.E., Drew, R.A. and Pritchard, H.W. (2007) Seed morphology and ultrastructure in Citrus garrawayi (Rutaceae) in relation to germinability. Australian Journal of Botany 55, 618627.CrossRefGoogle Scholar
Harpaz-Saad, S., McFarlane, H.E., Xu, S., Divi, U.K., Forward, B., Western, T.L. and Kieber, J.J. (2011) Cellulose synthesis via the FEI2 RLK/SOS5 pathway and CELLULOSE SYNTHASE 5 is required for the structure of seed coat mucilage in Arabidopsis. Plant Journal DOI: 10.1111/j.1365-313X.2011.04760.x.CrossRefGoogle ScholarPubMed
Harper, J. and Benton, R. (1966) The behaviour of seeds in soil. II. The germination of seeds on the suface of a water supplying substrate. Journal of Ecology 54, 151166.CrossRefGoogle Scholar
Heydecker, W. and Orphanos, P. (1968) The effect of excess moisture on the germination of Spinacia oleracea L. Planta 83, 237247.CrossRefGoogle ScholarPubMed
Hirst, E.L., Rees, D.A. and Richardson, N.G. (1965) Seed polysaccharides and their role in germination. Biochemical Journal 95, 453458.CrossRefGoogle ScholarPubMed
Hoth, S., Morgante, M., Sanchez, J.-P., Hanafey, M.K., Tingey, S.V. and Chua, N.-H. (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. Journal of Cell Science 115, 48914900.CrossRefGoogle ScholarPubMed
Hsiao, Y.-C. and Chuang, T. (1981) Seed-coat morphology and anatomy in Collomia (Polemoniaceae). American Journal of Botany 68, 11551164.Google Scholar
Huang, J., Bowles, D., Esfandiari, E., Dean, G., Carpita, N.C. and Haughn, G.W. (2011) The Arabidopsis transcription factor LUH/MUM1 is required for extrusion of seed coat mucilage. Plant Physiology 156, 491502.CrossRefGoogle ScholarPubMed
Huang, Z.Y. and Gutterman, Y. (1999) Water absorption by mucilaginous achenes of Artemisia monosperma: floating and germination as affected by salt concentrations. Israel Journal of Plant Sciences 47, 2734.CrossRefGoogle Scholar
Huang, Z., Boubriak, I., Osborne, D.J., Dong, M. and Gutterman, Y. (2008) Possible role of pectin-containing mucilage and dew in repairing embryo DNA of seeds adapted to desert conditions. Annals of Botany 101, 277283.CrossRefGoogle ScholarPubMed
Hyde, B.B. (1970) Mucilage-producing cells in the seed coat of Plantago ovata: developmental fine structure. American Journal of Botany 57, 11971206.Google Scholar
Ibrahim, N., El-Eraky, W., El-Gengaihi, S. and Shalaby, A. (1997) Chemical and biological evaluation of proteins and mucilages from roots and seeds of Glossostemon bruguieri Desf. (Moghat). Plant Foods for Human Nutrition 50, 5561.CrossRefGoogle ScholarPubMed
Iglesias-Fernández, R., Matilla, A.J., Pulgar, I. and de la Torre, F. (2007) Ripe fruits of Sisymbrium officinale L. contain heterogeneous endospermic seeds with different germination rates. Seed Science and Biotechnology 1, 1824.Google Scholar
Inceer, H. (2011) Achene slime content in some taxa of Matricaria L. (Asteraceae). Acta Botanica Croatica 70, 109114.CrossRefGoogle Scholar
Iuchi, S., Suzuki, H., Kim, Y.-C., Iuchi, A., Kuromori, T., Ueguchi-Tanaka, M., Asami, T., Yamaguchi, I., Matsuoka, M., Kobayashi, M. and Nakajima, M. (2007) Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant Journal 50, 958966.CrossRefGoogle Scholar
Jofuku, K.D., den Boer, B.G.W., Montagu, M.V. and Okamuro, J.K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6, 12111225.Google ScholarPubMed
Johnson, C.S., Kolevski, B. and Smyth, D.R. (2002) TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14, 13591375.CrossRefGoogle ScholarPubMed
Jordaan, A. (2008) Ultrastructure and histochemistry of seeds of Colophospermum mopane during imbibition. South African Journal of Botany 74, 591597.CrossRefGoogle Scholar
Jurgens, G. (2005) Cytokinesis in higher plants. Annual Review Plant Biology 56, 281299.CrossRefGoogle ScholarPubMed
Karssen, C.M., Brinkhorst-van der Swan, D.L.C., Breekland, A.E. and Koornneef, M. (1983) Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158165.CrossRefGoogle ScholarPubMed
Khan, M.-R., Salimath, P., Anjaneyalu, Y. and Tharanathan, R.N. (1987) Structural features of an arabinogalactan from the seeds of Becium filamentosum. Phytochemistry 26, 11971198.CrossRefGoogle Scholar
Kim, Y.-C., Nakajima, M., Nakayama, A. and Yamaguchi, I. (2005) Contribution of gibberellins to the formation of Arabidopsis seed coat through starch degradation. Plant and Cell Physiology 46, 13171325.CrossRefGoogle Scholar
Kong, Y., Zhou, G., Yin, Y., Xu, Y., Pattathil, S. and Hahn, M.G. (2011) Molecular analysis of a family of Arabidopsis genes related to galacturonosyltransferases. Plant Physiology 155, 17911805.CrossRefGoogle ScholarPubMed
Koornneef, M. (1981) The complex syndrome of ttg mutants. Arabidopsis Information Service 18, 4551.Google Scholar
Kraemer, H. (1898) Origin and detection of mucilage in plants. American Journal of Pharmacy 70, .Google Scholar
Kreitschitz, A. (2009) Biological properties of fruit and seed slime envelope: how to live, fly, and not die. pp. 1130 in Gorb, S.N. (Ed.) Functional surfaces in biology. New York, NY, Springer Science.CrossRefGoogle Scholar
Kreitschitz, A. and Vàlles, J. (2007) Achene morphology and slime structure in some taxa of Artemisia L. and Neopallasia L. (Asteraceae). Flora 202, 570580.CrossRefGoogle Scholar
Kreitschitz, A., Tadele, Z. and Gola, E.M. (2009) Slime cells on the surface of Eragrostis seeds maintain a level of moisture around the grain to enhance germination. Seed Science Research 19, 2735.CrossRefGoogle Scholar
Kulich, I., Cole, R., Drdová, E., Cvrčková, F., Soukup, A., Fowler, J. and Žárský, V. (2010) Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytologist 188, 615625.CrossRefGoogle ScholarPubMed
Kunieda, T., Mitsuda, N., Ohme-Takagi, M., Takeda, S., Aida, M., Tasaka, M., Kondo, M., Nishimura, M. and Hara-Nishimura, I. (2008) NAC Family proteins NARS1/NAC2 and NARS2/NAM in the outer integument regulate embryogenesis in Arabidopsis. The Plant Cell 20, 26312642.CrossRefGoogle ScholarPubMed
Léon-Kloosterziel, K.M., Keijzer, C.J. and Koornneef, M. (1994) A seed shape mutant of Arabidopsis that is affected in integument development. Plant Cell 6, 685692.CrossRefGoogle ScholarPubMed
Lerouxel, O., Cavalier, D., Liepman, A. and Keegstra, K. (2006) Biosynthesis of plant cell wall polysaccharides – a complex process. Current Opinion in Plant Biology 9, 621630.CrossRefGoogle ScholarPubMed
Li, S.F., Milliken, O.N., Pham, H., Seyit, R., Napoli, R., Preston, J., Koltunow, A.M. and Parish, R.W. (2009) The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell 21, 7289.CrossRefGoogle ScholarPubMed
Lobova, T.A., Mori, S.A., Blanchard, F., Peckham, H. and Charles-Dominique, P. (2003) Cecropia as a food resource for bats in French Guiana and the significance of fruit structure in seed dispersal and longevity. American Journal of Botany 90, 388403.CrossRefGoogle ScholarPubMed
Lu, J., Tan, D., Baskin, J.M. and Baskin, C.C. (2010) Fruit and seed heteromorphism in the cold desert annual ephemeral Diptychocarpus strictus (Brassicaceae) and possible adaptive significance. Annals of Botany 105, 9991014.CrossRefGoogle ScholarPubMed
Macquet, A., Ralet, M.C., Kronenberger, J., Marion-Poll, A. and North, H.M. (2007a) In situ, chemical and macromolecular study of the composition of Arabidopsis thaliana seed coat mucilage. Plant and Cell Physiology 48, 984999.CrossRefGoogle ScholarPubMed
Macquet, A., Ralet, M.C., Loudet, O., Kronenberger, J., Mouille, G., Marion-Poll, A. and North, H.M. (2007b) A naturally occurring mutation in an Arabidopsis accession affects a β-D-galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage. Plant Cell 19, 39904006.CrossRefGoogle Scholar
McAbee, J.M., Hill, T.A., Skinner, D.J., Izhaki, A., Hauser, B.A., Meister, R.J., Venugopala Reddy, G., Meyerowitz, E.M., Bowman, J.L. and Gasser, C.S. (2006) ABERRANT TESTA SHAPE encodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. Plant Journal 46, 522531.CrossRefGoogle ScholarPubMed
McFarlane, H.E., Young, R.E., Wasteneys, G.O. and Samuels, A.L. (2008) Cortical microtubules mark the mucilage secretion domain of the plasma membrane in Arabidopsis seed coat cells. Planta 227, 13631375.CrossRefGoogle ScholarPubMed
Mendu, V., Griffiths, J., Persson, S., Stork, J., Downie, B., Voiniciuc, C., Haughn, G. and DeBolt, S. (2011) Subfunctionalization of cellulose synthases in seed coat epidermal cells mediate secondary radial wall synthesis and mucilage attachment. Plant Physiology 157, 441453.CrossRefGoogle ScholarPubMed
Moffatt, B.A., Stevens, Y.Y., Allen, M.S., Snider, J.D., Pereira, L.A., Todorova, M.I., Summers, P.S., Weretilnyk, E.A., Martin-McCaffrey, L. and Wagner, C. (2002) Adenosine kinase deficiency is associated with developmental abnormalities and reduced transmethylation. Plant Physiology 128, 812821.CrossRefGoogle ScholarPubMed
Molina, I., Ohlrogge, J.B. and Pollard, M. (2008) Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. Plant Journal 53, 437449.CrossRefGoogle ScholarPubMed
Mott, J. (1974) Factors affecting seed germination in three annual species from an arid region of Western Australia. Journal of Ecology 62, 699709.CrossRefGoogle Scholar
Mühlethaler, K. (1950) The structure of plant slimes. Experimental Cell Research 1, 341350.CrossRefGoogle Scholar
Müller, K., Tintelnot, S. and Leubner-Metzger, G. (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium stativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant & Cell Physiology 47, 864877.CrossRefGoogle Scholar
Muralikrishna, G., Salimath, P. and Tharanathan, R.N. (1987) Structural features of an arabinoxylan and a rhamnogalacturonan derived from linseed mucilage. Carbohydrate Research 161, 265271.CrossRefGoogle Scholar
Naran, R., Chen, G. and Carpita, N.C. (2008) Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. Plant Physiology 148, 132141.CrossRefGoogle ScholarPubMed
Oka, T., Nemoto, T. and Jigami, Y. (2007) Functional analysis of Arabidopsis thaliana RHM2/MUM4, a multidomain protein involved in UDP-D-glucose to UDP-L-rhamnose conversion. Journal of Biological Chemistry 282, 53895403.CrossRefGoogle ScholarPubMed
Oomah, D.B., Kenaschuk, E.O., Cui, W. and Mazza, G. (1995) Variation in the composition of water-soluble polysaccharides in flaxseed. Journal of Agricultural and Food Chemistry 43, 14841488.CrossRefGoogle Scholar
Panigrahi, S.G. (1986) Seed morphology of Rotala L., Ammannia L., Nesaea Kunth and Hionanthera Fernandes & Diniz (Lythraceae). Botanical Journal of the Linnean Society 93, 389403.CrossRefGoogle Scholar
Panikashvili, D., Shi, J.X., Schreiber, L. and Aharoni, A. (2009) The Arabidopsis DCR encoding a soluble BAHD acyltransferase is required for cutin polyester formation and seed hydration properties. Plant Physiology 151, 17731789.CrossRefGoogle ScholarPubMed
Penfield, S., Meissner, R.C., Shoue, D.A., Carpita, N.C. and Bevan, M.W. (2001) MYB61 is required for mucilage deposition and extrusion in the Arabidopsis seed coat. Plant Cell 13, 27772791.CrossRefGoogle ScholarPubMed
Rautengarten, C., Usadel, B., Neumetzler, L., Hartmann, J., Büssis, D. and Altmann, T. (2008) A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coats. Plant Journal 54, 466480.CrossRefGoogle ScholarPubMed
Razavi, S.M.A., Mortazavi, S.A., Matia-Merino, L., Hosseini-Parvar, S.H., Motamedzadegan, A. and Khanipour, E. (2009) Optimisation study of gum extraction from basil seeds (Ocimum basilicum L.). International Journal of Food Science and Technology 44, 17551762.CrossRefGoogle Scholar
Rerie, W.G., Feldmann, K.A. and Marks, D.M. (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes and Development 8, 13881399.CrossRefGoogle ScholarPubMed
Ryding, O. (2001) Myxocarpy in the Nepetoideae (Lamiaceae) with notes on mxyodiaspory in general. Systematics and Geography of Plants 71, 502514.CrossRefGoogle Scholar
Schnepf, E. and Deichgräber, G. (1983a) Structure and formation of fibrillar mucilage in seed epidermis cells. I. Collomia grandiflora (Polemoniaceae). Protoplasma 114, 210221.CrossRefGoogle Scholar
Schnepf, E. and Deichgräber, G. (1983b) Structure and formation of fibrillar mucilage in seed epidermis cells. II. Ruellia (Acanthaceae). Protoplasma 114, 222234.CrossRefGoogle Scholar
Sharma, P. and Koul, A. (1986) Mucilage in seeds of Plantago ovata and its wild allies. Journal of Ethnopharmacology 17, 289295.CrossRefGoogle ScholarPubMed
Siddiqui, I.R., Yiu, S.H., Jones, J.D. and Kalab, M. (1986) Mucilage in yellow mustard (Brassica hirta) seeds. Food Microstructure 5, 157162.Google Scholar
Sitaraman, J., Bui, M. and Liu, Z. (2008) LEUNIG_HOMOLOG and LEUNIG perform partially redundant functions during Arabidopsis embryo and floral development. Plant Physiology 147, 672681.CrossRefGoogle ScholarPubMed
Srinivas, M., Joshi, S. and Krishnan, R. (1998) Ontogeny of solasodine-containing mucilage layer in Solanum viarum Dunal, ploidy types. Journal of Biosciences 23, 155162.CrossRefGoogle Scholar
Stork, J., Harris, D., Griffiths, J., Williams, B., Beisson, F., Li-Beisson, Y., Mendu, V., Haughn, G. and DeBolt, S. (2010) CELLULOSE SYNTHASE9 serves a nonredundant role in secondary cell wall synthesis in Arabidopsis epidermal testa cells. Plant Physiology 153, 580589.CrossRefGoogle ScholarPubMed
Sullivan, S., Ralet, M.C., Berger, A., Diatloff, E., Bischoff, V., Gonneau, M., Marion-Poll, A. and North, H.M. (2011) CESA5 is required for the synthesis of cellulose with a role in structuring the adherent mucilage of Arabidopsis seeds. Plant Physiology 156, 17251739.CrossRefGoogle ScholarPubMed
Swarbrick, J. (1971) External mucilage production by seeds of British plants. Botanical Journal of the Linnean Society 64, 157162.CrossRefGoogle Scholar
Thapliyal, R., Phartyal, S., Baskin, J.M. and Baskin, C.C. (2008) Role of mucilage in germination of Dillenia indica (Dilleniaceae) seeds. Australian Journal of Botany 56, 583589.CrossRefGoogle Scholar
Tomoda, M., Yokoi, M. and Ishikawa, K. (1981) Plant mucilages XXIX. Isolation and characterization of a mucous polysaccharide, ‘Plantago-mucilage A’ from the seeds of Plantago major var. asiatica. Chemical and Pharmaceutical Bulletin 29, 28772884.CrossRefGoogle Scholar
Usadel, B., Kuschinsky, A.M., Rosso, M.G., Eckermann, N. and Pauly, M. (2004) RHM2 is involved in mucilage pectin synthesis and is required for the development of the seed coat in Arabidopsis. Plant Physiology 134, 286295.CrossRefGoogle ScholarPubMed
Van Caeseele, L., Mills, J.T., Sumner, M. and Gillespie, R. (1981) Cytology of mucilage production in the seed coat of Candle canola (Brassica campestris). Canadian Journal of Botany 59, 292300.CrossRefGoogle Scholar
Van Caeseele, L., Kovacs, M.I.P. and Gillespie, R. (1987) Netural sugar analysis of polysaccharides from the seed epidermis of Brassical campestris. Journal of the American Oil Chemists' Society 64, 761762.CrossRefGoogle Scholar
Vaughan, J.G. and Whitehouse, J.M. (1971) Seed structure and the taxonomy of the Cruciferae. Botanical Journal of the Linnean Society 64, 383409.CrossRefGoogle Scholar
Vose, J.R. (1974) Chemical and physical studies of mustard and rapeseed Coats. Cereal Chemistry 51, 658665.Google Scholar
Walker, A.R., Davison, P.A., Bolognesi-Winfield, A.C., James, C.M., Srinivasan, N., Blundell, T.L., Esch, J.J., Marks, D.M. and Gray, J.C. (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11, 13371349.CrossRefGoogle ScholarPubMed
Walker, M., Tehseen, M., Doblin, M.S., Pettolino, F.A., Wilson, S.M., Bacic, A. and Golz, J.F. (2011) The transcriptional regulator LEUNIG_HOMOLOG regulates mucilage release from the Arabidopsis testa. Plant Physiology 156, 4660.CrossRefGoogle ScholarPubMed
Warrand, J., Michaud, P., Picton, L., Muller, G., Courtois, B., Ralainirina, R. and Courtois, J. (2003) Large-scale purification of water-soluble polysaccharides from flaxseed mucilage, and isolation of a new anionic polymer. Chromatographia 58, 331335.Google Scholar
Western, T.L. (2006) Changing spaces: the Arabidopsis mucilage secretory cells as a novel system to dissect cell wall production in differentiating cells. Canadian Journal of Botany 84, 622630.CrossRefGoogle Scholar
Western, T.L., Skinner, D.J. and Haughn, G.W. (2000) Differentiation of mucilage secretory cells of the Arabidopsis seed coat. Plant Physiology 122, 345355.CrossRefGoogle ScholarPubMed
Western, T.L., Burn, J., Tan, W.L., Skinner, D.J., Martin-McCaffrey, L., Moffatt, B.A. and Haughn, G.W. (2001) Isolation and characterization of mutants defective in seed coat mucilage secretory cell development in Arabidopsis. Plant Physiology 127, 9981011.CrossRefGoogle ScholarPubMed
Western, T.L., Young, D.S., Dean, G.H., Tan, W.L., Samuels, A.L. and Haughn, G.W. (2004) MUCILAGE-MODIFIED4 encodes a putative pectin biosynthetic enzyme developmentally regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis seed coat. Plant Physiology 134, 296306.CrossRefGoogle ScholarPubMed
Willats, W.G.T., McCartney, L. and Knox, J.P. (2001) In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta 213, 3744.CrossRefGoogle ScholarPubMed
Windsor, J.B., Symonds, V.V., Mendenhall, J. and Lloyd, A.L. (2000) Arabidopsis seed coat development: morphological differentiation of the outer integument. Plant Journal 22, 483493.CrossRefGoogle ScholarPubMed
Witztum, A., Gutterman, Y. and Evenari, M. (1969) Integumentary mucilage as an oxygen barrier during germination of Blepharis persica (Burm.) Kuntze. Botanical Gazette 130, 238241.CrossRefGoogle Scholar
Woods, D. and Downey, R. (1980) Mucilage from yellow mustard. Canadian Journal of Plant Science 60, 10311033.CrossRefGoogle Scholar
Wu, Y., Cui, W., Eskin, N.A.M. and Goff, H.D. (2009) Fractionation and partial characterization of non-pectic polysaccharides from yellow mustard mucilage. Food Hydrocolloids 23, 15351541.CrossRefGoogle Scholar
Xu, S.L., Rahman, A., Baskin, T.I. and Kieber, J.J. (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20, 30653079.CrossRefGoogle ScholarPubMed
Yang, X., Dong, M. and Huang, Z. (2010) Role of mucilage in the germination of Artemisia sphaerocephala (Asteraceae) achenes exposed to osmotic stress and salinity. Plant Physiology and Biochemistry 48, 131135.CrossRefGoogle ScholarPubMed
Young, J.A. and Evans, R.A. (1973) Mucilaginous seed coats. Weed Science 21, 5254.CrossRefGoogle Scholar
Young, J.A., Evans, R.A., Gifford, R.O. and Eckert, R.E.J. Jr (1970) Germination characteristics of three species of Cruciferae. Weed Science 18, 4148.CrossRefGoogle Scholar
Young, R.E., McFarlane, H.E., Hahn, M.G., Western, T.L., Haughn, G.W. and Samuels, A.L. (2008) Analysis of the Golgi apparatus in Arabidopsis seed coat cells during polarized secretion of pectin-rich mucilage. Plant Cell 20, 16231638.CrossRefGoogle ScholarPubMed
Zeng, C.-L., Wang, J.-B., Liu, A.-H. and Wu, X.-M. (2004) Seed coat microsculpturing changes during seed development in diploid and amphidiploid Brassica species. Annals of Botany 93, 555566.CrossRefGoogle ScholarPubMed
Zhang, F., Gonzalez, A., Zhao, M., Payne, C.T. and Lloyd, A. (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130, 48594869.CrossRefGoogle ScholarPubMed
Zhang, Y., Liu, C.-M., Emons, A.-M.C. and Ketelaar, T. (2010) The plant exocyst. Journal of Integrative Plant Biology 52, 138146.CrossRefGoogle ScholarPubMed
Zohuriaan-Mehr, M.J. and Kabiri, K. (2008) Superabsorbent polymer materials: a review. Iranian Polymer Journal 17, 415477.Google Scholar
Zwieniecki, M.A., Melcher, P.J. and Holbrook, N.M. (2001) Hydrogel control of xylem hydraulic resistance in plants. Science 291, 10591062.CrossRefGoogle ScholarPubMed