Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T19:24:18.617Z Has data issue: false hasContentIssue false

Soluble carbohydrates in legume seeds

Published online by Cambridge University Press:  05 July 2012

Ralph L. Obendorf*
Affiliation:
Seed Biology, Department of Crop and Soil Sciences, 617 Bradfield Hall, Cornell University Agricultural Experiment Station, Cornell University, Ithaca, NY14853-1901, USA
Ryszard J. Górecki
Affiliation:
Department of Plant Physiology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-718Olsztyn, Poland
*
*Correspondence Fax: +1 607 255 2644 Email: [email protected]

Abstract

Mature dry legume seeds may contain up to 30 different soluble carbohydrates. Sucrose is a major component of the total soluble carbohydrates; others include the raffinose family oligosaccharides (RFOs; raffinose, stachyose, verbascose) that are mono-, di- and tri-α-galactosyl derivatives of sucrose. Other galactosides may include α-galactosyl derivatives of the cyclitols myo-inositol (galactinol, digalactosyl myo-inositol and trigalactosyl myo-inositol), d-pinitol (galactopinitol A, digalactosyl pinitol A (ciceritol) and trigalactosyl pinitol A; and galactopinitol B; higher galactosyl oligomers of galactopintiol B have rarely been detected), d-chiro-inositol (fagopyritol B1, fagopyritol B2 and fagopyritol B3) and d-ononitol (galactosyl d-ononitol and digalactosyl d-ononitol). Small amounts of myo-inositol, d-pinitol and d-chiro-inositol may also be present. Raffinose, stachyose and verbascose increase late in seed maturation, with 70% of RFOs accumulating after maximum seed dry weight is attained. RFOs are mostly degraded during germination. Sucrose, myo-inositol, d-pinitol and d-chiro-inositol are synthesized in maternal tissues of some legumes and are transported to and unloaded by seed coats into the apoplastic space surrounding developing seed embryos. Free cyclitols may be 60% of total soluble carbohydrates in leaves and 20% in seed coat cup exudates. Increasing the supply of free cyclitols may increase the accumulation of their respective α-galactosides in mature seeds. Seeds with reduced RFO accumulation, but with normal to elevated concentrations of galactosyl cyclitols (including fagopyritols), have normal field emergence and are also tolerant to imbibitional chilling under laboratory conditions. Molecular structures, biosynthetic pathways, accumulation of soluble carbohydrates in response to seed-expressed mutations and the physiological role of galactosides are reviewed.

Type
Review Paper
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, C.A. and Rinne, R.W. (1980) Moisture content as a controlling factor in seed development and germination. International Review of Cytology 68, 18.CrossRefGoogle Scholar
Adams, C.A. and Rinne, R.W. (1981) Seed maturation in soybeans (Glycine max L. Merr) is independent of seed mass and of the parent plant, yet is necessary for production of viable seeds. Journal of Experimental Botany 32, 615620.CrossRefGoogle Scholar
Adams, C.A., Fjerstad, M.C. and Rinne, R.W. (1983) Characteristics of soybean seed maturation: necessity for slow dehydration. Crop Science 23, 265267.CrossRefGoogle Scholar
Amuti, K.S. and Pollard, C.J. (1977a) Soluble carbohydrates of dry and developing seeds. Phytochemistry 16, 529532.CrossRefGoogle Scholar
Amuti, K.S. and Pollard, C.J. (1977b) The metabolism of galactose and the raffinose oligosaccharides by germinating Bambarra groundnut seeds. Phytochemistry 16, 533537.CrossRefGoogle Scholar
Angyal, S.J. and Odier, L. (1982) The 13C-NMR spectra of inositols and cyclohexanepentols: the validity of rules correlating chemical shifts with configuration. Carbohydrate Research 100, 4354.CrossRefGoogle Scholar
Angyal, S.J. and Odier, L. (1983) The effect of O-methylation on chemical shifts in the 1H- and 13C-N.M.R. spectra of cyclic polyols. Carbohydrate Research 123, 2329.CrossRefGoogle Scholar
Ballesteros, D. and Walters, C. (2011) Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems. Plant Journal 68, 607619.CrossRefGoogle Scholar
Bassel, G.W., Mullen, R.T. and Bewley, J.D. (2001) α-Galactosidase is synthesized in tomato seeds during development and is localized in the protein storage vacuoles. Canadian Journal of Botany 79, 14171424.CrossRefGoogle Scholar
Baumgartner, S., Genner, R.R., Haas, J., Amado, R. and Neukom, H. (1986) Isolation and identification of cyclitols in carob pods (Ceratonia siliqua). Journal of Agricultural and Food Chemistry 34, 827829.CrossRefGoogle Scholar
Bellaloui, N., Smith, J.R., Gillen, A.M. and Ray, J.D. (2010) Effect of maturity on seed sugars as measured on near-isogenic soybean (Glycine max) lines. Crop Science 50, 19781987.CrossRefGoogle Scholar
Bernabé, M., Fenwick, R., Frias, J., Jiménez-Barbero, J., Price, K., Valverde, S. and Vidal-Valverde, C. (1993) Determination, by NMR spectroscopy, of the structure of ciceritol, a pseudotrisaccharide isolated from lentils. Journal of Agricultural and Food Chemistry 41, 870872.CrossRefGoogle Scholar
Beveridge, R.J., Ford, C.W. and Richards, G.N. (1977) Polysaccharides of tropical pasture herbage. VII. Identification of a new pinitol galactoside from seeds of Trifolium subterraneum (subterranean clover) and analysis of several pasture legume seeds for cyclohexitols and their galactosides. Australian Journal of Chemistry 30, 15831590.CrossRefGoogle Scholar
Bewley, J.D. and Black, M. (1994) Seeds: Physiology of development and germination. New York, Plenum Press.CrossRefGoogle Scholar
Bien, S. and Ginsburg, D. (1958) The structure of bornesitol. Journal of the Chemical Society 1953, 31893194.CrossRefGoogle Scholar
Binder, R.G. and Haddon, W.F. (1984) Analysis of O-methylinositols by gas–liquid chromatography–mass spectrometry. Carbohydrate Research 129, 2132.CrossRefGoogle Scholar
Blackman, S.A., Wettlaufer, S.H., Obendorf, R.L. and Leopold, A.C. (1991) Maturation proteins associated with desiccation tolerance in soybean. Plant Physiology 96, 868874.CrossRefGoogle ScholarPubMed
Blackman, S.A., Obendorf, R.L. and Leopold, A.C. (1992) Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology 100, 225230.CrossRefGoogle ScholarPubMed
Blackman, S.A., Obendorf, R.L. and Leopold, A.C. (1995) Desiccation tolerance in developing soybean seeds: the role of stress proteins. Physiologia Plantarum 93, 630638.CrossRefGoogle Scholar
Blöchl, A., Grenier-de March, G., Sourdioux, M., Peterbauer, T. and Richter, A. (2005) Induction of raffinose oligosaccharide biosynthesis by abscisic acid in somatic embryos of alfalfa (Medicago sativa L.). Plant Science 168, 10751082.CrossRefGoogle Scholar
Blöchl, A., Peterbauer, T. and Richter, A. (2007) Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds. Journal of Plant Physiology 164, 10931096.CrossRefGoogle ScholarPubMed
Blöchl, A., Peterbauer, T., Hofmann, J. and Richter, A. (2008) Enzymatic breakdown of raffinose oligosaccharides in pea seeds. Planta 228, 99110.CrossRefGoogle ScholarPubMed
Bohnert, H.J., Nelson, D.E. and Jensen, R.G. (1995) Adaptations to environmental stresses. Plant Cell 7, 10991111.CrossRefGoogle ScholarPubMed
Boudet, J., Buitink, J., Hoekstra, F.A., Rogniaux, H., Larré, C., Satour, P. and Leprince, O. (2006) Comparative analysis of the heat stable proteome of radicles of Medicago truncatula seeds during germination identifies late embryogenesis abundant proteins associated with desiccation tolerance. Plant Physiology 140, 14181436.CrossRefGoogle ScholarPubMed
Brown, R.J. and Serro, R.F. (1953) Isolation and identification of O-α-d-galactopyranosyl-myo-inositol and of myo-inositol from juice of the sugar beet (Beta vulgaris). Journal of the American Chemical Society 75, 10401042.CrossRefGoogle Scholar
Buitink, J., Leger, J.J., Guisle, I., Vu, B.L., Wuilleme, S., Lamirault, G., Le Bars, A., Le Meur, N., Becker, A., Kuester, H. and Leprince, O. (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation-sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant Journal 47, 735750.CrossRefGoogle ScholarPubMed
Campbell, B.C. and Binder, R.G. (1984) Alfalfa cyclitols in the honeydew of an aphid. Phytochemistry 23, 17861787.CrossRefGoogle Scholar
Carmi, N., Zhang, G.F., Petreikov, M., Gao, Z.F., Eyal, Y., Granot, D. and Schaffer, A.A. (2003) Cloning and functional expression of alkaline α-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant Journal 33, 97106.CrossRefGoogle ScholarPubMed
Castillo, E.M., de Lumen, B.O., Reyes, P.S. and de Lumen, H.Z. (1990) Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes. Journal of Agricultural and Food Chemistry 38, 351355.CrossRefGoogle Scholar
Chappell, A.S., Scaboo, A.M., Wu, X., Nguyen, H., Pantalone, V.R. and Bilyeu, K.D. (2006) Characterization of the MIPS gene family in Glycine max. Plant Breeding 125, 493500.CrossRefGoogle Scholar
Chiera, J.M. and Grabau, E.A. (2007) Localization of myo-inositol phosphate synthase (GmMIPS-1) during the early stages of soybean seed development. Journal of Experimental Botany 58, 22612268.CrossRefGoogle ScholarPubMed
Chiera, J.M., Streeter, J.G. and Finer, J.J. (2006) Ononitol and pinitol production in transgenic soybean containing the inositol methyl transferase gene from Mesembryanthemum crystallinum. Plant Science 171, 647654.CrossRefGoogle Scholar
Corbineau, F., Picard, M.A., Fougereaux, J.A., Ladonne, F. and Côme, D. (2000) Effect of dehydration conditions on desiccation tolerance of developing pea seeds as related to oligosaccharide content and cell membrane properties. Seed Science Research 10, 329339.CrossRefGoogle Scholar
Courtois, J.E. and Percheron, F. (1971) Distribution of monosaccharides, oligosaccharides and polyols. pp. 207229in (Eds) Chemotaxonomy of the Leguminosae. New York, Academic Press.Google Scholar
Dey, P.M. (1985) d-Galactose-containing oligsaccharides. pp. 53129in (Ed.) Biochemistry of storage carbohydrates in green plants. London, Academic Press.Google Scholar
Dey, P.M. (1990) Oligosaccharides. pp. 189218in (Ed.) Methods in Plant Biochemistry Volume 2 Carbohydrates. New York, Academic Press.Google Scholar
Dey, P.M., Del Campillo, E.M. and Pont Lezica, R. (1983) Characterization of a glycoprotein α-galactosidase from lentil seeds (Lens culinaris). Journal of Biological Chemistry 258, 923929.CrossRefGoogle ScholarPubMed
Dierking, E.C. and Bilyeu, K.D. (2008) Association of a soybean raffinose synthase gene with low raffinose and stachyose seed phenotype. Plant Genome 1, 135145.CrossRefGoogle Scholar
Dierking, E.C. and Bilyeu, K.D. (2009a) New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Biology 9, 89, doi:10.1186/1471-2229-9-89. Available athttp://www.biomedcentral.com/1471-2229/9/89 (accessed accessed 7 September 2009).CrossRefGoogle ScholarPubMed
Dierking, E.C. and Bilyeu, K.D. (2009b) Raffinose and stachyose metabolism are not required for efficient soybean seed germination. Journal of Plant Physiology 166, 13291335.CrossRefGoogle Scholar
Dittrich, P. and Brandl, A. (1987) Revision of the pathway of d-pinitol formation in Leguminosae. Phytochemistry 26, 19251926.CrossRefGoogle Scholar
Ellis, E.C. and Spanswick, R.M. (1987) Sugar efflux from attached seed coats of Glycine max (L.) Merr. Journal of Experimental Botany 38, 14701483.CrossRefGoogle Scholar
Ellis, E.C., Turgeon, R. and Spanswick, R.M. (1992) Quantitative analysis of photosynthate unloading in developing seeds of Phaseolus vulgaris L. I. The use of steady-state labeling. Plant Physiology 99, 635642.CrossRefGoogle Scholar
Erdman, J.W. (1979) Oilseed phytates: nutritional implications. Journal of the American Oil Chemists' Society 56, 736741.CrossRefGoogle Scholar
Farrant, J.M. and Moore, J.P. (2011) Programming desiccation-tolerance: from plants to seeds to resurrection plants. Current Opinion in Plant Biology 14, 340345.CrossRefGoogle ScholarPubMed
Finch-Savage, W.E., Hendry, G.A.F. and Atherton, N.M. (1994) Free radical activity and loss of viability during drying of desiccation-sensitive tree seeds. Proceedings of the Royal Society of Edinburgh 102B, 257260.Google Scholar
Ford, C.W. (1982) Accumulation of O-methyl-inositols in water stressed Vigna species. Phytochemistry 21, 11491151.CrossRefGoogle Scholar
Ford, C.W. (1984) Accumulation of low molecular weight solutes in water-stressed tropical legumes. Phytochemistry 23, 10071015.CrossRefGoogle Scholar
Frank, T., Norenberg, S. and Engel, K.H. (2009) Metabolite profiling of two novel low phytic acid (lpa) soybean mutants. Journal of Agricultural and Food Chemistry 57, 64086416.CrossRefGoogle ScholarPubMed
Frias, J., Bakhsh, A., Jones, D.A., Arthur, A.E., Vidal-Valverde, C., Rhodes, M.J.C. and Hedley, C.L. (1999) Genetic analysis of the raffinose oligosaccharide pathway in lentil seeds. Journal of Experimental Botany 50, 469476.CrossRefGoogle Scholar
Ganter, J.L.M.S., Correa, J., Reicher, F., Heyraud, A. and Rinaudo, M. (1991) Low molecular weight carbohydrates from Mimosa scabrella seeds. Plant Physiology and Biochemistry 29, 139146.Google Scholar
Gomes, C.I., Obendorf, R.L. and Horbowicz, M. (2005) myo-Inositol, d-chiro-inositol, and d-pinitol synthesis, transport, and galactoside formation in soybean explants. Crop Science 45, 13121319.CrossRefGoogle Scholar
Górecki, R.J. and Obendorf, R.L. (1997) Galactosyl cyclitols and raffinose family oligosaccharides in relation to desiccation tolerance of pea and soyabean seedlings. pp. 119128in (Eds) Basic and applied aspects of seed biology: Proceedings of the Fifth International Workshop on Seeds, Reading, 1995. Amsterdam, Kluwer Academic Publishers.CrossRefGoogle Scholar
Górecki, R.J., Brenac, P., Clapham, W.M., Willcott, J.B. and Obendorf, R.L. (1996) Soluble carbohydrates in white lupin seeds matured at 13 and 28°C. Crop Science 36, 12771282.CrossRefGoogle Scholar
Górecki, R.J., Piotrowicz-Cieślak, A. and Obendorf, R.L. (1997a) Soluble sugars and flatulence-producing oligosaccharides in maturing yellow lupin (Lupinus luteus L.) seeds. Seed Science Research 7, 185193.CrossRefGoogle Scholar
Górecki, R.J., Piotrowicz-Cieślak, A., Lahuta, L.B. and Obendorf, R.L. (1997b) Soluble carbohydrates in desiccation tolerance of yellow lupin seeds during maturation and germination. Seed Science Research 7, 107115.CrossRefGoogle Scholar
Górecki, R.J., Fordoński, G., Halmajan, H., Horbowicz, M., Jones, R.G. and Lahuta, L.B. (2001) Seed physiology and biochemistry. pp. 117143in (Ed.) Carbohydrates in grain legume seeds: Improving nutritional quality and agronomic characteristics. Wallingford, UK, CAB International.Google Scholar
Hegeman, C.E., Good, L.L. and Grabau, E.A. (2001) Expression of d-myo-inositol-3-phosphate synthase in soybean. Implications for phytic acid biosynthesis. Plant Physiology 125, 19411948.CrossRefGoogle ScholarPubMed
Herman, E.M. and Shannon, L.M. (1985) Accumulation and subcellular localization of α-galactosidase-hemagglutinin in developing soybean cotyledons. Plant Physiology 77, 886890.CrossRefGoogle ScholarPubMed
Hitz, W.D., Carlson, T.J., Kerr, P.S. and Sebastian, S.A. (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiology 128, 650660.CrossRefGoogle ScholarPubMed
Hoch, G., Peterbauer, T. and Richter, A. (1999) Purification and characterization of stachyose synthase from lentil (Lens culinaris) seeds: galactopinitol and stachyose synthesis. Archives of Biochemistry and Biophysics 366, 7581.CrossRefGoogle ScholarPubMed
Hoekstra, F.A., Golovina, E.A. and Buitink, J. (2001) Mechanisms of plant desiccation tolerance. Trends in Plant Science 6, 431438.CrossRefGoogle ScholarPubMed
Horbowicz, M. and Obendorf, R.L. (1994) Seed desiccation tolerance and storability: dependence on flatulence-producing oligosaccharides and cyclitols – review and survey. Seed Science Research 4, 385405.CrossRefGoogle Scholar
Horbowicz, M. and Obendorf, R.L. (2005) Fagopyritol accumulation and germination of buckwheat seeds matured at 15, 22, and 30°C. Crop Science 45, 12641270.CrossRefGoogle Scholar
Horbowicz, M., Obendorf, R.L., McKersie, B.D. and Viands, D.R. (1995) Soluble saccharides and cyclitols in alfalfa (Medicago sativa L.) somatic embryos, leaflets, and mature seeds. Plant Science 109, 191198.CrossRefGoogle Scholar
Horbowicz, M., Brenac, P. and Obendorf, R.L. (1998) Fagopyritol B1, O-α-d-galactopyranosyl-(1 → 2)-d-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance. Planta 205, 111.CrossRefGoogle ScholarPubMed
Hsu, S.H., Hadley, H.H. and Hymowitz, T. (1973) Changes in carbohydrate contents of germinating soybean seeds. Crop Science 13, 407410.CrossRefGoogle Scholar
Hulke, B.S., Fehr, W.R. and Welke, G.A. (2004) Agronomic and seed characteristics of soybean with reduced phytate and palmitate. Crop Science 44, 20272031.CrossRefGoogle Scholar
Hundertmark, M., Buitink, J., Leprince, O. and Hincha, D.K. (2011) The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Science Research 21, 165173.CrossRefGoogle Scholar
Israel, D.W., Taliercio, E., Kwanyuen, P., Burton, J.W. and Dean, L. (2011) Inositol metabolism in developing seed of low and normal phytic acid soybean lines. Crop Science 51, 282289.CrossRefGoogle Scholar
Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology 47, 141153.CrossRefGoogle ScholarPubMed
Jones, D.A., DuPont, M.S., Ambrose, M.J., Frias, J. and Hedley, C.L. (1999) The discovery of compositional variation for the raffinose family of oligosaccharides in pea seeds. Seed Science Research 9, 305310.CrossRefGoogle Scholar
Kadlec, P., Bjergegaard, C., Gulewicz, K., Horbowicz, M., Jones, A., Kintia, P., Kratchanov, C., Lewandowicz, M., Soral-Smietana, G., Sorensen, H. and Urban, J. (2001) Carbohydrate chemistry. pp. 1559in (Ed.) Carbohydrates in legume seeds: Improving nutritional quality and agronomic characteristics. Wallingford, UK, CAB International.Google Scholar
Kandler, O. and Hopf, H. (1980) Occurrence, metabolism, and function of oligosaccharides. pp. 221270in (Ed.) The biochemistry of plants, Volume 3. New York, Academic Press.Google Scholar
Karner, U., Peterbauer, T., Raboy, V., Jones, D.A., Hedley, C.L. and Richter, A. (2004) myo-Inositol and sucrose concentrations affect the accumulation of raffinose family oligosaccharides in seeds. Journal of Experimental Botany 55, 19811987.CrossRefGoogle ScholarPubMed
Keller, F. and Ludlow, M.M. (1993) Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan). Journal of Experimental Botany 44, 13511359.CrossRefGoogle Scholar
Koller, F. and Hoffmann-Ostenhof, O. (1976) Biosynthesis of cyclitols. XXXIV. Purification of myo-inositol 3-methyltransferase from Pisum sativum and of myo-inositol 1-methyltransferase from Vinca minor to homogeneity by affinity chromatography. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 357, 14651468.CrossRefGoogle ScholarPubMed
Kosina, S.M., Castillo, A., Schnebly, S.R. and Obendorf, R.L. (2009) Soybean seed coat cup unloading on plants with low-raffinose, low-stachyose seeds. Seed Science Research 19, 145153.CrossRefGoogle Scholar
Kosina, S.M., Schnebly, S.R. and Obendorf, R.L. (2010) Free cyclitol unloading from seed coats on stem–leaf–pod explants of low-raffinose, low-stachyose, low-phytin soybean. Seed Science Research 20, 223236.CrossRefGoogle Scholar
Koster, K.L. and Leopold, A.C. (1988) Sugars and desiccation tolerance in seeds. Plant Physiology 88, 829832.CrossRefGoogle ScholarPubMed
Kotiguda, G., Peterbauer, T. and Mulimani, V.H. (2006) Isolation and structural analysis of ajugose from Vigna mungo L. Carbohydrate Research 341, 21562160.CrossRefGoogle ScholarPubMed
Kuo, T.M., VanMiddlesworth, J.F. and Wolf, W.J. (1988) Content of raffinose oligosaccharides and sucrose in various plant seeds. Journal of Agricultural and Food Chemistry 36, 3236.CrossRefGoogle Scholar
Lahuta, L.B. and Dzik, T. (2011) d-chiro-Inositol affects accumulation of raffinose family oligosaccharides in developing embryos of Pisum sativum. Journal of Plant Physiology 168, 352358.CrossRefGoogle ScholarPubMed
Lahuta, L.B. and Górecki, R.J. (2011) Raffinose in seedlings of winter vetch (Vicia villosa Roth.) under osmotic stress and followed by recovery. Acta Physiologiae Plantarum 33, 725733.CrossRefGoogle Scholar
Lahuta, L.B. and Goszczyńska, J. (2009) Inhibition of raffinose family oligosaccharides and galactosyl pinitols breakdown delays germination of winter vetch (Vicia villosa Roth.) seeds. Acta Societatis Botanicorum Poloniae 78, 203208.CrossRefGoogle Scholar
Lahuta, L.B. and Goszczyńska, J. (2010) Cyclitols in maturing grains of wheat, triticale and barley. Acta Societatis Botanicorum Poloniae 79, 181187.CrossRefGoogle Scholar
Lahuta, L.B., Górecki, R.J., Michalczyk, D. and Piotrowicz-Cieśkak, A.I. (2000a) alpha-d-Galactosidase activity in stored yellow lupin (Lupinus luteus L.) seeds. Electronic Journal of Polish Agricultural Universities, Series Agronomy 3, 18.Google Scholar
Lahuta, L.B., Login, A., Socha, A. and Zalewski, K. (2000b) Influence of water deficit on the accumulation of sugars in developing field bean (Vicia faba var. minor) seeds. Seed Science and Technology 28, 93100.Google Scholar
Lahuta, L.B., Górecki, R.J., Gojło, E. and Horbowicz, M. (2004) Effect of exogenous abscisic acid on accumulation of raffinose family oligosaccharides and galactosyl cyclitols in tiny vetch seeds (Vicia hirsuta [L.] SF Gray). Acta Societatis Botanicorum Poloniae 73, 277283.CrossRefGoogle Scholar
Lahuta, L.B., Górecki, R.J., Gojło, E. and Horbowicz, M. (2005a) Differences in accumulation of soluble α-galactosides during seed maturation of several Vicia species. Acta Physiologiae Plantarum 27, 163171.CrossRefGoogle Scholar
Lahuta, L.B., Górecki, R.J. and Horbowicz, M. (2005b) High concentrations of d-pinitol or d-chiro-inositol inhibit the biosynthesis of raffinose family oligosaccharides in maturing smooth tare (Vicia tetrasperma [L.] Schreb.) seeds. Acta Physiologiae Plantarum 27, 505513.CrossRefGoogle Scholar
Lahuta, L.B., Horbowicz, M., Gojło, E., Goszczyńska, J. and Górecki, R.J. (2005c) Exogenously applied d-pinitol and d-chiro-inositol modifies the accumulation of α-d-galactosides in developing tiny vetch (Vicia hirsuta [L.] SF Gray) seeds. Acta Societatis Botanicorum Poloniae 74, 287296.CrossRefGoogle Scholar
Lahuta, L.B., Goszczyńska, J. and Horbowicz, M. (2010a) Seed α-d-galactosides of selected Vicia species and enzymes involved in their biosynthesis. Acta Biologica Cracoviensia Series Botanica 52, 2735.Google Scholar
Lahuta, L.B., Goszczyńska, J., Horbowicz, M., Holdyński, C. and Górecki, R.J. (2010b) Cyclitols affect accumulation of α-d-galactosides in developing Vicia seeds. Acta Physiologiae Plantarum 32, 933942.CrossRefGoogle Scholar
Lahuta, L.B., Święcicki, W., Dzik, T., Górecki, R.J. and Horbowicz, M. (2010c) Feeding stem–leaf–pod explants of pea (Pisum sativum L.) with d-chiro-inositol or d-pinitol modifies composition of α-d-galactosides in developing seeds. Seed Science Research 20, 213221.CrossRefGoogle Scholar
Le, B.H., Cheng, C., Bui, A.Q., Wagmaister, J.A., Henry, K.F., Pelletier, J., Kwong, L., Belmonte, M., Kirkbride, R., Horvath, S., Drews, G.N., Fischer, R.L., Okamuro, J.K., Harada, J.J. and Goldberg, R.B. (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences, USA 107, 80638070.CrossRefGoogle ScholarPubMed
Lehle, L., Tanner, W. and Kandler, O. (1970) myo-Inositol, a cofactor in the biosynthesis of raffinose. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 351, 14941498.CrossRefGoogle ScholarPubMed
Leprince, O. and Buitink, J. (2010) Desiccation tolerance: from genomics to the field. Plant Science 179, 554564.CrossRefGoogle Scholar
Leprince, O., Hendry, G.A.F. and McKersie, B.D. (1993) The mechanisms of desiccation tolerance in developing seeds. Seed Science Research 3, 231246.CrossRefGoogle Scholar
Li, X. and Dhaubhadel, S. (2011) Soybean 14-3-3 gene family: identification and molecular characterization. Planta 233, 569582.CrossRefGoogle ScholarPubMed
Li, X., Zhuo, J.J., Jing, Y., Liu, X. and Wang, X.F. (2011) Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development. Journal of Plant Physiology 168, 17611770.CrossRefGoogle ScholarPubMed
Liu, J.J., Odegard, W. and de Lumen, B.O. (1995) Galactinol synthase from kidney bean cotyledon and zucchini leaf: purification and N-terminal sequences. Plant Physiology 109, 505511.CrossRefGoogle ScholarPubMed
Liu, J.J.J., Krenz, D.C., Galvez, A.F. and de Lumen, B.O. (1998) Galactinol synthase (GS): increased enzyme activity and levels of mRNA due to cold and desiccation. Plant Science 134, 1120.CrossRefGoogle Scholar
Loewus, F.A. (1990) Cyclitols. pp. 219233in (Ed.) Methods in Plant Biochemistry Volume 2 Carbohydrates. New York, Academic Press.Google Scholar
Loewus, F.A. and Murthy, P.P.N. (2000) myo-Inositol metabolism in plants. Plant Science 150, 119.CrossRefGoogle Scholar
Lowell, C.A. and Kuo, T.M. (1989) Oligosaccharide metabolism and accumulation in developing soybean seeds. Crop Science 29, 459465.CrossRefGoogle Scholar
Ma, J.M., Horbowicz, M. and Obendorf, R.L. (2005) Cyclitol galactosides in embryos of buckwheat stem–leaf–seed explants fed d-chiro-inositol, myo-inositol, or d-pinitol. Seed Science Research 15, 329338.CrossRefGoogle Scholar
Maruyama, K., Takeda, M., Kidokoro, S., Yamada, K., Sakuma, Y., Urano, K., Fujita, M., Yoshiwara, K., Matsukura, S., Morishita, Y., Sasaki, R., Suzuki, H., Saito, K., Shibata, D., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiology 150, 19721980.CrossRefGoogle ScholarPubMed
McIntyre, D.D. and Vogel, H.J. (1989) Complete assignment of the 1H NMR spectrum of stachyose by two-dimensional NMR spectroscopy. Journal of Natural Products 52, 10081014.CrossRefGoogle Scholar
Meis, S.J., Fehr, W.R. and Schnebly, S.R. (2003) Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Science 43, 13361339.CrossRefGoogle Scholar
Meredith, F.I., Thomas, C.A., Snook, M.E., Himmelsbach, D.S. and Van Halbeek, H. (1988) Soluble carbohydrates, oligosaccharides and starch in lima bean seeds. Journal of Food Science 53, 768771.CrossRefGoogle Scholar
Minorsky, P.V. (2003) Raffinose oligosaccharides. Plant Physiology 131, 11591160.CrossRefGoogle Scholar
Morris, G.A. and Hall, L.D. (1981) Experimental chemical shift correlation maps from heteronuclear two-dimensional NMR spectroscopy. 1. Carbon-13 and proton chemical shifts of raffinose and its subunits. Journal of the American Chemical Society 103, 47034711.CrossRefGoogle Scholar
Morse, M., Rafudeen, M.S. and Farrant, J.M. (2011) An overview of the current understanding of desiccation tolerance in the vegetative tissues of higher plants. Advances in Botanical Research 57, 319347.CrossRefGoogle Scholar
Naczk, M., Amarowicz, R. and Shahidi, F. (1997) α-Galactosides of sucrose in foods: composition, flatulence-causing effects, and removal. America Society of Chemistry Symposium Series 662, 127151.Google Scholar
Neus, J.D., Fehr, W.R. and Schnebly, S.R. (2005) Agronomic and seed characteristics of soybean with reduced raffinose and stachyose. Crop Science 45, 589592.CrossRefGoogle Scholar
Nicolas, P., Gertsch, I. and Parisod, C. (1984) Isolation and structure determination of an α-d-galactosyl-α-d-galactosyl-α-d-galactosyl-d-pinitol from the chick pea. Carbohydrate Research 131, 331334.CrossRefGoogle Scholar
Nishizawa, A., Yabuta, Y. and Shigeoka, S. (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiology 147, 12511263.CrossRefGoogle ScholarPubMed
Noguchi, K., Okuyama, K., Hidano, O.S., Wakiuchi, N., Tarui, T., Tamaki, H., Kishirara, S. and Fujii, S. (2000) Molecular and crystal structure of galactinol dihydrate [1l-O-(α-d-galactopyranosyl)-myo-inositol dihydrate]. Carbohydrate Research 328, 241248.CrossRefGoogle ScholarPubMed
Nonogaki, H., Bassel, G.W. and Bewley, J.D. (2010) Germination – still a mystery. Plant Science 179, 574581.CrossRefGoogle Scholar
Nunes, A.C.S., Vianna, G.R., Cuneo, F., Amaya-Farfán, J., de Capdeville, G., Rech, E.L. and Aragão, F.J.L. (2006) RNAi-mediated silencing of the myo-inositol-1-phosphate synthase gene (GmMIPS1) in transgenic soybean inhibited seed development and reduced phytate content. Planta 224, 125132.CrossRefGoogle ScholarPubMed
Obendorf, R.L. (1997) Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance (review update). Seed Science Research 7, 6374.CrossRefGoogle Scholar
Obendorf, R.L. and Kosina, S.M. (2011) Soluble carbohydrates in soybean. pp. 201228in (Ed.) Soybean – biochemistry, chemistry and physiology. Rijeka, Croatia, InTech Open Access Publisher, ISBN 978-953-307-219-7. Available athttp://www.intechopen.com/articles/show/title/soluble-carbohydrates-in-soybean (accessed accessed 29 December 2011).Google Scholar
Obendorf, R.L., Dickerman, A.M., Pflum, T.M., Kacalanos, M.A. and Smith, M.E. (1998a) Drying rate alters soluble carbohydrates, desiccation tolerance, and seedling growth of soybean zygotic embryos during in vitro maturation. Plant Science 132, 112.CrossRefGoogle Scholar
Obendorf, R.L., Horbowicz, M., Dickerman, A.M., Brenac, P. and Smith, M.E. (1998b) Soluble oligosaccharides and galactosyl cyclitols in maturing soybean seeds in planta and in vitro. Crop Science 38, 7884.CrossRefGoogle Scholar
Obendorf, R.L., Steadman, K.J., Fuller, D.J., Horbowicz, M. and Lewis, B.A. (2000) Molecular structure of fagopyritol A1 (O-α-d-galactopyranosyl-(1 → 3)-d-chiro-inositol) by NMR. Carbohydrate Research 328, 623627.CrossRefGoogle Scholar
Obendorf, R.L., Odorcic, S., Ueda, T., Coseo, M.P. and Vassallo, E. (2004) Soybean galactinol synthase forms fagopyritol B1 but not galactopinitols: substrate feeding of isolated embryos and heterologous expression. Seed Science Research 14, 321333.CrossRefGoogle Scholar
Obendorf, R.L., McInnis, C.E., Horbowicz, M., Keresztes, I. and Lahuta, L.B. (2005) Molecular structure of lathyritol, a galactosyl bornesitol from Lathyrus odoratus seeds, by NMR. Carbohydrate Research 340, 14411446.CrossRefGoogle ScholarPubMed
Obendorf, R.L., Sensenig, E.M., Wu, J., Ohashi, M., O'Sullivan, T.E., Kosina, S.M. and Schnebly, S.R. (2008a) Soluble carbohydrates in mature soybean seed after feeding d-chiro-inositol, myo-inositol, or d-pinitol to stem-leaf-pod explants of low-raffinose, low-stachyose lines. Plant Science 175, 650655.CrossRefGoogle Scholar
Obendorf, R.L., Zimmerman, A.D., Ortiz, P.A., Taylor, A.G. and Schnebly, S.R. (2008b) Imbibitional chilling sensitivity and soluble carbohydrate composition of low raffinose, low stachyose soybean seed. Crop Science 48, 23962403.CrossRefGoogle Scholar
Obendorf, R.L., Zimmerman, A.D., Zhang, Q., Castillo, A., Kosina, S.M., Bryant, E.G., Sensenig, E.M., Wu, J. and Schnebly, S.R. (2009) Accumulation of soluble carbohydrates during seed development and maturation of low-raffinose, low-stachyose soybean. Crop Science 49, 329341.CrossRefGoogle Scholar
Obendorf, R.L., Horbowicz, M. and Lahuta, L.B. (2012) Characterization of sugars, cyclitols and galactosyl cyclitols in seeds by GC. pp. 167–185 in (Ed.) Dietary sugars: Chemistry, analysis, function and effects. Cambridge, UK, RSC Publishing (in press).Google Scholar
Odorcic, S. and Obendorf, R.L. (2003) Galactosyl cyclitol accumulation enhanced by substrate feeding of soybean embryos. pp. 5160in (Eds) The biology of seeds: Recent research advances. Wallingford, UK, CABI Publishing.Google Scholar
Ogawa, K., Watanabe, T., Ikeda, Y. and Kondo, S. (1997) A new glycoside, 1d-2-O-α-d-galactopyranosyl-chiro-inositol from jojoba beans. Carbohydrate Research 302, 219221.CrossRefGoogle Scholar
Oltmans, S.E., Fehr, W.R., Welke, G.A., Raboy, V. and Peterson, K.L. (2005) Agronomic and seed traits of soybean lines with low-phytate phosphorus. Crop Science 45, 593598.CrossRefGoogle Scholar
Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K., Iida, K., Maruyama, K., Satoh, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant Journal 34, 868887.CrossRefGoogle ScholarPubMed
Orthen, B. and Popp, M. (2000) Cyclitols as cryoprotectants for spinach and chickpea thylakoids. Environmental and Experimental Botany 44, 125132.CrossRefGoogle ScholarPubMed
Orthen, B., Popp, M. and Smirnoff, N. (1994) Hydroxyl radical scavenging properties of cyclitols. Proceedings of the Royal Society of Edinburgh Section B (Biological Sciences) 102, 269272.Google Scholar
Patrick, J.W. (1983) Photosynthate unloading from seed coats of Phaseolus vulgaris L., General characteristics and facilitated transfer. Zeitschrift für Pflanzenphysiologie 111, 918.CrossRefGoogle Scholar
Patrick, J.W. and Offler, C.E. (2001) Compartmentation of transport and transfer events in developing seeds. Journal of Experimental Botany 52, 551564.CrossRefGoogle ScholarPubMed
Pattee, H.E., Isleib, T.G., Giesbrecht, F.G. and McFeeters, R.F. (2000) Investigations into genotypic variations of peanut carbohydrates. Journal of Agricultural and Food Chemistry 48, 750756.CrossRefGoogle ScholarPubMed
Petek, F., Villarroya, E. and Courtois, J.E. (1966) Isolation of two galactosides of myo-inositol from vetch seeds. Comptes Rendus de l'Académie des Sciences (Paris) Série D: Sciences Naturelles 263, 195197.Google Scholar
Petek, F., Villarroya, E. and Courtois, J.E. (1969) Purification et propriétés de l'α-galactosidase des graines germées Vicia sativa. European Journal of Biochemistry 8, 395402.CrossRefGoogle ScholarPubMed
Peterbauer, T. and Richter, A. (1998) Galactosylononitol and stachyose synthesis in seeds of adzuki bean: purification and characterization of stachyose synthase. Plant Physiology 117, 165172.CrossRefGoogle ScholarPubMed
Peterbauer, T. and Richter, A. (2001) Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds. Seed Science Research 11, 185198.Google Scholar
Peterbauer, T., Puschenreiter, M. and Richter, A. (1998) Metabolism of galactosylononitol in seeds of Vigna umbellata. Plant and Cell Physiology 39, 334341.CrossRefGoogle Scholar
Peterbauer, T., Mucha, J., Mayer, U., Popp, M., Glössl, J. and Richter, A. (1999) Stachyose synthesis in seeds of adzuki bean (Vigna angularis): molecular cloning and functional expression of stachyose synthase. Plant Journal 20, 509518.CrossRefGoogle ScholarPubMed
Peterbauer, T., Lahuta, L.B., Blöchl, A., Mucha, J., Jones, D.A., Hedley, C.L., Górecki, R.J. and Richter, A. (2001) Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition. Plant Physiology 127, 17641772.CrossRefGoogle ScholarPubMed
Peterbauer, T., Mach, L., Mucha, J. and Richter, A. (2002a) Functional expression of a cDNA encoding pea (Pisum sativum L.) raffinose synthase, partial purification of the enzyme from maturing seeds, and steady-state kinetic analysis of raffinose synthesis. Planta 215, 839846.CrossRefGoogle ScholarPubMed
Peterbauer, T., Mucha, J., Mach, L. and Richter, A. (2002b) Chain-elongation of raffinose in pea seeds: isolation, characterization and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose. Journal of Biological Chemistry 277, 194200.CrossRefGoogle ScholarPubMed
Peterbauer, T., Brereton, I. and Richter, A. (2003a) Identification of a digalactosyl ononitol from seeds of adzuki bean (Vigna angularis). Carbohydrate Research 338, 20172019.CrossRefGoogle ScholarPubMed
Peterbauer, T., Karner, U., Mucha, J., Mach, L., Jones, D.A., Hedley, C.L. and Richter, A. (2003b) Enzymatic control of the accumulation of verbascose in pea seeds. Plant Cell and Environment 26, 13851391.CrossRefGoogle Scholar
Plant, A.R. and Moore, K.G. (1982) α-d-Mannosidase and α-d-galactosidase from protein bodies of Lupinus angustifolius cotyledons. Phytochemistry 21, 985989.CrossRefGoogle Scholar
Popova, A.V., Hundertmark, M., Seckler, R. and Hincha, D.K. (2011) Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes. Biochimica et Biophysica Acta – Biomembranes 1808, 18791887.CrossRefGoogle ScholarPubMed
Powers, W.J., Fritz, E.R., Fehr, W. and Angel, R. (2006) Total and water-soluble phosphorus excretion from swine fed low-phytate soybeans. Journal of Animal Science 84, 19071915.CrossRefGoogle ScholarPubMed
Quemener, B. and Brillouet, J.M. (1983) Ciceritol, a pinitol digalactoside from seeds of chickpea, lentil and white lupin. Phytochemistry 22, 17451751.CrossRefGoogle Scholar
Raboy, V. (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Science 177, 281296.CrossRefGoogle Scholar
Rainbird, R.M., Thorne, J.H. and Hardy, R.W.F. (1984) Role of amides, amino acids, and ureides in the nutrition of developing soybean seeds. Plant Physiology 74, 329334.CrossRefGoogle ScholarPubMed
Rammesmayer, G., Pichorner, H., Adams, P., Jensen, R.G. and Bohnert, H.J. (1995) Characterization of IMT1, myo-inositol O-methyltransferase, from Mesembryanthemum crystallinum. Archives of Biochemistry and Biophysics 322, 183188.CrossRefGoogle ScholarPubMed
Ren, C., Bilyeu, K.D. and Beuselinck, P.R. (2009) Composition, vigor, and proteome of mature soybean seeds developed under high temperature. Crop Science 49, 10101022.CrossRefGoogle Scholar
Richter, A., Peterbauer, T. and Brereton, I. (1997) The structure of galactosyl ononitol. Journal of Natural Products 60, 749751.CrossRefGoogle Scholar
Rosenberg, L.A. and Rinne, R.W. (1986) Moisture loss as a prerequisite for seedling growth in soybean seed (Glycine max L. Merr.). Journal of Experimental Botany 37, 16631674.CrossRefGoogle Scholar
Rosenberg, L.A. and Rinne, R.W. (1987) Changes in seed constituents during germination and seedling growth of precociously matured soybean seeds (Glycine max). Annals of Botany 60, 705712.CrossRefGoogle Scholar
Schweizer, T.F. and Horman, I. (1981) Purification and structure determination of three α-d-galactopyranosylcyclitols from soya beans. Carbohydrate Research 95, 6171.CrossRefGoogle Scholar
Schweizer, T.F., Horman, I. and Würsch, P. (1978) Low molecular weight carbohydrates from leguminous seeds; a new disaccharide: galactopinitol. Journal of the Science of Food and Agriculture 29, 148154.CrossRefGoogle Scholar
Sebastian, S.A., Kerr, P.S., Pearlstein, R.W. and Hitz, W.D. (2000) Soybean germplasm with novel genes for improved digestibility. pp. 5673in (Ed.) Soy in animal nutrition. Savoy, Illinois, Federation of Animal Science Societies.Google Scholar
Shiomi, N., Takeda, T. and Kiriyama, S. (1988) A new digalactosyl cyclitol from seed balls of sugar beet. Agricultural and Biological Chemistry 52, 15871588.Google Scholar
Skoneczka, J.A., Maroof, M.A.S., Shang, C. and Buss, G.R. (2009) Identification of candidate gene mutation associated with low stachyose phenotype in soybean line PI200508. Crop Science 49, 247255.CrossRefGoogle Scholar
Smirnoff, N. and Cumbes, Q.J. (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28, 10571060.CrossRefGoogle Scholar
Spear, J.D. and Fehr, W.R. (2007) Genetic improvement of seedling emergence of soybean lines with low phytate. Crop Science 47, 13541360.CrossRefGoogle Scholar
Steadman, K.J., Fuller, D.J. and Obendorf, R.L. (2001) Purification and molecular structure of two digalactosyl d-chiro-inositols and two trigalactosyl d-chiro-inositols from buckwheat seeds. Carbohydrate Research 331, 1925.CrossRefGoogle ScholarPubMed
Streeter, J.G., Lohnes, D.G. and Fioritto, R.J. (2001) Patterns of pinitol accumulation in soybean plants and relationships to drought tolerance. Plant Cell and Environment 24, 429438.CrossRefGoogle Scholar
Suarez, F.L., Springfield, J., Furne, J.K., Lohrmann, T.T., Kerr, P.S. and Levitt, M.D. (1999) Gas production in humans ingesting a soybean flour derived from beans naturally low in oligosaccharides. American Journal of Clinical Nutrition 69, 135139.CrossRefGoogle ScholarPubMed
Sun, W.Q. and Leopold, A.C. (1997) Cytoplasmic vitrification and survival of anhydrobiotic organisms. Comparative Biochemistry and Physiology A 117A, 327333.CrossRefGoogle Scholar
Szczeciński, P., Gryff-Keller, A., Horbowicz, M. and Obendorf, R.L. (1998) NMR investigation of the structure of fagopyritol B1 from buckwheat seeds. Bulletin of the Polish Academy of Sciences, Chemistry 46, 913.Google Scholar
Szczeciński, P., Gryff-Keller, A., Horbowicz, M. and Lahuta, L.B. (2000) Galactosylpinitols isolated from vetch (Vicia villosa Roth) seeds. Journal of Agricultural and Food Chemistry 48, 27172720.CrossRefGoogle ScholarPubMed
Tahir, M., Vandenberg, A. and Chibbar, R.N. (2011) Influence of environment on seed soluble carbohydrates in selected lentil cultivars. Journal of Food Composition and Analysis 24, 596602.CrossRefGoogle Scholar
Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K. and Shinozaki, K. (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant Journal 29, 417426.CrossRefGoogle ScholarPubMed
Tanner, W. (1969) The function of myo-inositol glycosides in yeasts and higher plants. Annals of the New York Academy of Sciences 165, 726742.Google Scholar
Tanner, W. and Kandler, O. (1968) myo-Inositol, a cofactor in the biosynthesis of stachyose. European Journal of Biochemistry 4, 233239.CrossRefGoogle ScholarPubMed
Tanner, W., Lehle, L. and Kandler, O. (1967) myo-Inositol, a cofactor in the biosynthesis of verbascose. Biochemical and Biophysical Research Communications 29, 166171.CrossRefGoogle ScholarPubMed
Thorne, J.H. (1985) Phloem unloading of C and N assimilates in developing seeds. Annual Review of Plant Physiology 36, 317343.CrossRefGoogle Scholar
Thorne, J.H. and Rainbird, R.M. (1983) An in vivo technique for the study of phloem unloading in seed coats of developing soybean seeds. Plant Physiology 72, 268271.CrossRefGoogle Scholar
Ueda, T., Coseo, M.P., Harrell, T.J. and Obendorf, R.L. (2005) A multifunctional galactinol synthase catalyzes the synthesis of fagopyritol A1 and fagopyritol B1 in buckwheat seed. Plant Science 168, 681690.CrossRefGoogle Scholar
Vernon, D.M. and Bohnert, H.J. (1992) Increased expression of a myo-inositol methyl transferase in Mesembryanthemum crystallinum is part of a stress response distinct from Crassulacean Acid Metabolism induction. Plant Physiology 99, 16951698.CrossRefGoogle ScholarPubMed
Vernon, D.M., Tarczynski, M.C., Jensen, R.G. and Bohnert, H.J. (1993) Cyclitol production in transgenic tobacco. Plant Journal 4, 199205.CrossRefGoogle Scholar
Vertucci, C.W. and Farrant, J.M. (1995) Acquisition and loss of desiccation tolerance. pp. 237271in (Eds) Seed development and germination. New York, Marcel Dekker.Google Scholar
Von Ohlen, F.W. (1931) A microchemical study of soybeans during germination. American Journal of Botany 18, 3049.CrossRefGoogle Scholar
Wagner, I., Hoffmann, H. and Hoffmann-Ostenhof, O. (1969) Über ein lösliches enzym aus erbsenkeimlingen, das myo-inosit zu d-bornesit methyliert [Studies on the biosynthesis of cyclitols. XXIII: A soluble enzyme from pea seedlings methylating myo-inositol to d-bornesitol]. Hoppe-Seyler's Zeitschrift für Physiologische Chemie 350, 14601464.CrossRefGoogle Scholar
Walters, C., Ballesteros, D. and Vertucci, V.A. (2010) Structural mechanics of seed deterioration: Standing the test of time. Plant Science 179, 565573.CrossRefGoogle Scholar
Wanek, W. and Richter, A. (1995) Purification and characterization of myo-inositol 6-O-methyltransferase from Vigna umbellata Ohwi et Ohashi. Planta 197, 427434.CrossRefGoogle Scholar
Wanek, W. and Richter, A. (1997) Biosynthesis and accumulation of d-ononitol in Vigna umbellata in response to drought stress. Physiologia Plantarum 101, 416424.CrossRefGoogle Scholar
Weber, H., Heim, U., Golombek, S., Borisjuk, L. and Wobus, U. (1998) Assimilate uptake and the regulation of seed development. Seed Science Research 8, 331345.CrossRefGoogle Scholar
Weber, H., Borisjuk, L. and Wobus, U. (2005) Molecular physiology of legume seed development. Annual Review of Plant Biology 56, 253279.CrossRefGoogle ScholarPubMed
Wolswinkel, P. (1992) Transport of nutrients into developing seeds: a review of physiological mechanisms. Seed Science Research 2, 5973.CrossRefGoogle Scholar
Wolswinkel, P. and Ammerlaan, A. (1983) Phloem unloading in developing seeds of Vicia faba L. The effect of several inhibitors on the release of sucrose and amino acids by the seed coat. Planta 158, 205215.CrossRefGoogle Scholar
Yasui, T. (1980) Identification of a new galactosyl cyclitol from seeds of Vigna angularis Ohwi et Ohashi (adzuki bean). Agricultural and Biological Chemistry 44, 22532255.Google Scholar
Yasui, T. and Ohno, S. (1982) Distribution of galactosyl ononitol and ononitol in Angiospermae. Journal of the Agricultural Chemical Society of Japan 56, 10531056.Google Scholar
Zalewski, K., Nitkiewicz, B., Lahuta, L.B., Glowacka, K., Socha, A. and Amarowicz, R. (2010) Effect of jasmonic acid-methyl ester on the composition of carbohydrates and germination of yellow lupine (Lupinus luteus L.) seeds. Journal of Plant Physiology 167, 967973.CrossRefGoogle ScholarPubMed
Zhao, T.Y., Corum, J.W., Mullen, J., Meeley, R.B., Helentjaris, T., Martin, D. and Downie, B. (2006) An alkaline α-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Science Research 16, 107121.CrossRefGoogle Scholar