Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T01:42:09.379Z Has data issue: false hasContentIssue false

Serotiny in Melocactus matanzanus (Cactaceae) and role of cephalium in dispersal of seeds after the individual's death

Published online by Cambridge University Press:  16 December 2021

Duniel Barrios*
Affiliation:
Grupo de Ecología y Conservación, Jardín Botánico Nacional, Universidad de La Habana, Havana, Cuba
Sandy Toledo
Affiliation:
Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
Jorge A. Sánchez
Affiliation:
Instituto de Ecología y Sistemática, Ministerio de Ciencia, Tecnología y Medio Ambiente, La Habana, Cuba
Luis R. González-Torres
Affiliation:
Department of Biology, Douglas College, New Westminster, Canada Department of Botany, University of British Columbia, Vancouver, Canada
*
*Author for Correspondence: Duniel Barrios, E-mail: [email protected]

Abstract

Serotiny is a strategy in which the retention of mature seeds in parent structures allows plants to cope with environmental variability like heat, drought or fire. Although this phenomenon might be common in Cactaceae, and particularly in Melocactus, it has generally been scarcely addressed. The main goal of our work is to investigate if there are seeds hidden in the cephalium of Melocactus matanzanus and if there are, determine whether or not these seeds maintain their viability. We also discuss some advantages the cephalium may offer as diaspore after the death of individuals. Cephalia collected from dead individuals were divided into four slices and their seeds counted; we also assessed the viability and photoblastic response of the seeds by using growth chambers at 25/30°C, and by a cut test on the seeds that did not germinate. Our results showed retention of viable seeds of different ages in all slices of the cephalium. Seeds were photoblastic positive with germination between 11–22% and viability above 50% in the portion of the lots that did not germinate.

Type
Short Communication
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, EF, Arias-Montes, S and Taylor, NP (1994) Threatened cacti of Mexico. Kew England, Royal Botanical Gardens.Google Scholar
Arias, I and Lemus, L (1984) Interaction of light, temperature and plant hormones in the germination of seeds of Melocactus caesius Went. (Cactaceae). Acta Científica Venezolana 35, 151155.Google Scholar
Barrios, D, Sánchez, JA, Flores, J and Jurado, E (2020) Seed traits and germination in the Cactaceae family: a review across the Americas. Botanical Sciences 98, 417444.Google Scholar
Baskin, CC and Baskin, JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination (2nd edn). San Diego, Elsevier/Academic Press.Google Scholar
Borhidi, A (1996) Phytogeography and vegetation ecology of Cuba. Budapest, Prielle Kornélia, Akadémiai Kiadó.Google Scholar
Bowers, JE (2000) Does Ferocactus wislizenii (Cactaceae) have a between-year seed bank? Journal of Arid Environments 45, 197205.CrossRefGoogle Scholar
Bravo-Hollis, H and Sánchez-Mejorada, H (1991) Las Cactáceas de México. México DF, Universidad Nacional Autónoma de México.Google Scholar
Casado, R and Soriano, PJ (2010) Fructificación, frugivoría y dispersión en el cactus globular Melocactus schatzlii en el enclave semiárido de Lagunillas, Mérida, Venezuela. Ecotropicos 23, 1836.Google Scholar
Chamberland, M (1997) Systematics of the Echinocactus polycephalus Complex (Cactaceae). Systematic Biology 22, 303313.Google Scholar
Da Silva, RCS, Amariz, A and Kiill, LHP (2018) Influência da temperatura e do tempo de armazenamento na germinação de sementes de duas espécies de cactáceas. Abrates 28, 97101.Google Scholar
Di Rienzo, JA, Casanoves, F, Balzarini, MG, Gonzalez, L, Tablada, M and Robledo, CW (2015) InfoStat Versión 2015. Grupo InfoStat. Argentina, FCA, Universidad Nacional de Córdoba. Available at: http://www.infostat.com.ar.Google Scholar
Dos Santos, AP, Hassemer, G and Meiado, MV (2018) Seed storage of Brazilian cacti species in different threat categories. Plant Species Biology 33, 203211.CrossRefGoogle Scholar
Duncan, C, Schultz, NL, Good, MK, Lewandrowski, W and Cook, S (2019) The risk-takers and -avoiders: germination sensitivity to water stress in an arid zone with unpredictable rainfall. AoB Plants 11, plz66.CrossRefGoogle Scholar
Earle, WH (1980) Cacti of the Southwest. Phoenix, Rancho Arroyo, Book Distributor.Google Scholar
Ellner, S and Shmida, A (1981) Why are adaptations for long-range seed dispersal rare in desert plants? Oecologia 51, 133144.Google Scholar
Faife, M and Toledo, SP (2007) Viabilidad de semillas de Melocactus guitartii León conservadas por seis y doce meses. Centro Agrícola 34, 4750.Google Scholar
Flores, J, Jurado, E, Chapa-Vargas, L, Ceroni-Stuva, A, Dávila-Aranda, P, Galíndez, G, Gurvich, D, León-Lobos, P, Ordóñez, C, Ortega-Baes, P, Ramírez-Bullón, N, Sandoval, A, Seal, CE, Ullian, T and Pritchard, HW (2011) Seeds photoblastism and its relationship with some plant traits in 136 cacti taxa. Environmental and Experimental Botany 71, 7988.CrossRefGoogle Scholar
Fonseca, RBS, Funch, LS and Borba, EL (2012) Dispersão de sementes de Melocactus glaucescens e M. paucispinus (Cactaceae), no Município de Morro do Chapéu, Chapada Diamantina – BA. Acta Botánica Brasilica 26, 481492.CrossRefGoogle Scholar
García-González, A, Riverón-Giró, FB, González-Ramírez, IS, Escalona Domenech, RY, Hernández, Y and Palacio, E (2016) Características poblacionales y ecología del endemismo cubano Melocactus nagyi(Cactaceae), en la Reserva Florística Manejada El Macío, Cuba. Revista Cubana de Ciencias Biológicas 5, 3342.Google Scholar
Godínez-Álvarez, H, Valverde, T and Ortegas-Baes, P (2003) Demographic trends in Cactaceae. The Botanical Review 69, 173203.Google Scholar
Godínez-Álvarez, H and Valiente-Banuet, A (2004) Demography of the columnar cactus Neobuxbaumia macrocephala: a comparative approach using population projection matrices. Plant Ecology 174, 109118.CrossRefGoogle Scholar
González-Torres, LR, Palmarola, A, González-Oliva, L, Bécquer, ER, Testé, E and Barrios, D (2016) Lista Roja de la flora de Cuba. Bissea 10, 1352.Google Scholar
Guo, Q, Rundel, PW and Goodall, DW (1999) Structure of desert seed banks comparisons across four North American desert sites. Journal of Arid Environments 42, 114.Google Scholar
Lamont, BB (1991) Canopy seed storage and release: what's in a name? Oikos 60, 266268.CrossRefGoogle Scholar
Lamont, BB and Enright, NJ (2000) Adaptative advantages of aerial seed banks. Plant Species Biology 15, 157166.CrossRefGoogle Scholar
Lamont, BB, Hanley, ME, Groom, PK and He, T (2016) Bird pollinators, seed storage and cockatoo granivores explain large woody fruits as best seed defense in Hakea. Perspectives in Plant Ecology, Evolution and Systematics 21, 5577.CrossRefGoogle Scholar
Lamont, BB, Pausas, JG, He, T, Witkowski, ET and Hanley, ME (2020) Fire as a selective agent for both serotiny and nonserotiny over space and time. Critical Reviews in Plant Sciences 39, 140172.Google Scholar
Lasso, E and Barrientos, LS (2015) Epizoocoría por medio de iguanas en el bosque seco: ¿un mecanismo de dispersión de semillas pasado por alto? Colombia Forestal 18, 151159.Google Scholar
León, H (1934) El género Melocactus en Cuba. Memorias de la Sociedad Cubana de Historia Natural 3, 201208.Google Scholar
Leyva, O and Riverón-Giró, F (2011) Curiosidad en la reproducción natural de Melocactus holguinensis (Cactaceae). Boletín de la Sociedad Latinoamericana y del Caribe de Cactáceas y otras Suculentas 8, 6.Google Scholar
Mandujano, MC, Golubov, J and Montaña, C (1997) Dormancy and endozoochorous dispersal of Opuntia rastrera seeds in the southern Chihuahuan Desert. Journal of Arid Environments 36, 259266.CrossRefGoogle Scholar
Martínez-Berdeja, A (2014) Rainfall variability in deserts and the timing of seed release in Chorizanthe rigida, a serotinous winter desert annual. PhD thesis, University of California, Riverside.Google Scholar
Martínez-Berdeja, A, Ezcurra, E and Sanders, AC (2015) Delayed seed dispersal in California deserts. Madroño 62, 2132.CrossRefGoogle Scholar
Mauseth, JD (1989) Comparative structure-function studies within a strongly dimorphic plant, Melocactus intortus (Cactaceae). Bradleya 7, 112.CrossRefGoogle Scholar
Meiado, MV, Rojas-Aréchiga, M, Siqueira-Filhos, JA and Leal, IR (2016) Effects of light and temperature on seed germination of cacti of Brazilian ecosystems. Plant Species Biology 31, 8797.CrossRefGoogle Scholar
Méndez, M, Durán, R, Olmsted, I and Oyama, K (2004) Population dynamics of Pterocereus gaumeri, a rare and endemic columnar cactus of Mexico. Biotropica 36, 492504.Google Scholar
Peters, EM, Martorell, C and Ezcurra, E (2009) The adaptive value of cued seed dispersal in desert plants: seed retention and release in Mammillaria pectinifera (Cactaceae), a small globose cactus. American Journal of Botany 96, 537541.CrossRefGoogle ScholarPubMed
Peters, EM, Martorell, C and Ezcurra, E (2011) The effects of serotiny and rainfall-cued dispersal on fitness: bet-hedging in the threatened cactus Mammillaria pectinifera. Population Ecology 53, 383392.CrossRefGoogle Scholar
Pons, TL (1991) Induction of dark dormancy in seeds: its importance for the seed bank in the soil. Functional Ecology 5, 669675.CrossRefGoogle Scholar
Ranal, MA, Santana, DG, Resende, W and Mendes-Rodrigues, C (2009) Calculating germination measurements and organizing spreadsheets. Revista Brasileira de Botanica 32, 849855.Google Scholar
Rebouças, ACMN and Santos, D (2007) Influência do fotoperíodo e qualidade de luz na germinação de sementes de Melocactus conoideus (Cactaceae). Revista Brasileira de Biociências 5, 900902.Google Scholar
Robledo, L (1999) Estado actual del Cuabal ‘Las tres Ceibas de Clavellinas’. MS thesis, Jardín Botánico Nacional, Universidad de La Habana, La Habana.Google Scholar
Rodríguez-Ortega, C and Franco, M (2001) La retención de semillas en el género Mammillaria (Cactaceae). Cactáceas y Suculentas Mexicanas 46, 6367.Google Scholar
Rodríguez-Ortega, C, Franco, M and Mandujano, MC (2006) Serotiny and seed germination in three threatened species of Mammillaria (Cactaceae). Basic and Applied Ecology 7, 533544.Google Scholar
Romão, RL, Hughes, FM, Vieira, AMC and Fontes, EC (2007) Autoecologia de Cabeça-de-frade (Melocactus ernestii Vaupel) em Duas Áreas de Afloramentos na Bahia. Revista Brasileira de Biociências 5, 738740.Google Scholar
Santini, BA and Martorell, C (2013) Does retained-seed priming drive the evolution of serotiny in drylands? An assessment using the cactus Mammillaria hernandezii. American Journal of Botany 100, 365373.Google ScholarPubMed
Soltani, E, Ghaderi-Far, F, Baskin, CC and Baskin, JM (2015) Problems with using mean germination time to calculate rate of seed germination. Australian Journal of Botany 63, 631635.Google Scholar
Steenbergh, WF and Lowe, CH (1969) Critical factors during the first years of life of the saguaro (Cereus giganteus) at saguaro national monument, Arizona. Ecology 50, 825834.Google Scholar
Taylor, NP (1991) The genus Melocactus (Cactaceae) in Central and South America. Bradleya 9, 180.Google Scholar
Thompson, K, Band, SR and Hodgson, JG (1993) Seed size and shape predict persistence in soil. Functional Ecology 7, 236241.Google Scholar
Thompson, K, Bakker, JP and Bekker, RM (1997) The soil seed banks of north west Europe: methodology, density and longevity. Cambridge, Cambridge University Press.Google Scholar
Thompson, K, Jalili, A, Hodgson, JG, Hamzeh'ee, B, Asri, Y, Shaw, S, Shirvany, A, Yazdani, S, Khoshnevis, M, Zarrinkamar, F, Ghahramani, M and Safavi, R (2001) Seed size, shape and persistence in the soil in an Iranian flora. Seed Science Research 11, 345355.Google Scholar
Valiente-Banuet, A and Ezcurra, E (1991) Shade as a cause of the association between the cactus Neobuxbaumia Tetetzo and the nurse plant Mimosa Luisana in the Tehuacan Valley, Mexico. Journal of Ecology 79, 961971.CrossRefGoogle Scholar
Valverde, PL and Zavala-Hurtado, JA (2006) Assessing the ecological status of Mammillaria pectinifera Weber (Cactaceae), a rare and threatened species endemic of the Tehuacán-Cuicatlán Region in Central Mexico. Journal of Arid Environments 64, 193208.CrossRefGoogle Scholar
Whitford, WG (2002) Ecology of desert systems. San Diego, Academic Press.Google Scholar