Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T14:06:45.322Z Has data issue: false hasContentIssue false

Seed-dormancy variation in natural populations of two tropical leguminous tree species: Senna multijuga (Caesalpinoideae) and Plathymenia reticulata (Mimosoideae)

Published online by Cambridge University Press:  22 February 2007

Daniela R. Lacerda
Affiliation:
Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP. 486, Belo Horizonte, MG, 31270–901, Brasil
José Pires Lemos Filho
Affiliation:
Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP. 486, Belo Horizonte, MG, 31270–901, Brasil
Maíra F. Goulart
Affiliation:
Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP. 486, Belo Horizonte, MG, 31270–901, Brasil
Renata A. Ribeiro
Affiliation:
Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP. 486, Belo Horizonte, MG, 31270–901, Brasil
Maria Bernadete Lovato*
Affiliation:
Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP. 486, Belo Horizonte, MG, 31270–901, Brasil
*
*Correspondence Fax: +55 31 34992570, Email: [email protected]

Abstract

Senna multijuga and Plathymenia reticulata are tropical tree species native to the Brazilian Atlantic Forest and the Brazilian Cerrado, respectively. Seed-coat dormancy variation was evaluated within and among natural populations of these two species. Scarified and non-scarified seeds from different plants within populations were germinated at 28°C, and the percentage of germinated seeds was estimated for both species. Mean germination percentages of non-scarified seeds tended to be higher for P. reticulata populations (40 and 62%) than for S. multijuga populations (9 and 35%). After scarification, germination percentages increased significantly in both species, with all populations showing mean values above 84%. The level of seed dormancy, evaluated through the experiment with non-scarified seeds, differed significantly within and among populations of both species (P < 0.05). The values of the coefficient of genotypic determination were high for populations of both species (b = 0.85). Although this coefficient is an overestimation, since it includes non-genetic maternal effects, its high values suggest that a considerable part of the phenotypic variation in seed dormancy in S. multijuga and P. reticulata is of genetic origin. Variation in seed dormancy can be an important factor for increasing genetic diversity in populations of these species, making them able to respond to environmental changes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, P.S. and Meyer, S.E. (2002) Ecology and ecological genetics of seed dormancy in downy brome. Weed Science 50, 241247.CrossRefGoogle Scholar
Andersson, L. and Milberg, P. (1998) Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Science Research 8, 2938.CrossRefGoogle Scholar
Baloch, H.A., DiTommaso, A. and Watson, A.K. (2001) Intrapopulation variation in Abutilon theophrasti seed mass and its relationship to seed germinability. Seed Science Research 11, 335343.Google Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Baskin, J.M. and Baskin, C.C. (2000) Evolutionary considerations of claims for physical dormancy-break by microbial action and abrasion by soil particles. Seed Science Research 10, 409413.CrossRefGoogle Scholar
Baskin, J.M., Nan, X. and Baskin, C.C. (1998) A comparative study of seed dormancy and germination in an annual and a perennial species of Senna (Fabaceae). Seed Science Research 8, 501512.CrossRefGoogle Scholar
Bazzaz, F.A. (1996) Plants in changing environments. Cambridge, Cambridge University Press.Google Scholar
Beckstead, J., Meyer, S.E. and Allen, P.S. (1996) Bromus tectorum seed germination: between-population and between-year variation. Canadian Journal of Botany 74, 875882.CrossRefGoogle Scholar
Bewley, J.D. and Black, M. (1982) Physiology and biochemistry of seeds. 2. Viability, dormancy and environmental control. New York, Springer-Verlag.Google Scholar
Bewley, J.D. and Black, M. (1994) Seeds: Physiology of development and germination (2nd edition). New York, Plenum Press.CrossRefGoogle Scholar
Carvalho, P.E.R. (1994) Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Brasília, EMBRAPA-CNPF/SPI.Google Scholar
Cruz, E.D., Martins, F.O. and Carvalho, J.E.U. (2001) Biometria de frutos e sementes e germinação de jatobá-curuba (Hymenaea intermedia Ducke, Leguminosae – Caesalpinioideae). Revista Brasileira de Botânica 24, 161165.Google Scholar
Eiten, G. (1972) The cerrado vegetation of Brazil. The Botanical Review 38, 201341.CrossRefGoogle Scholar
Fenner, M. (1991) The effects of the parent environment on seed germinability. Seed Science Research 1, 7584.CrossRefGoogle Scholar
Flores, E.M. and Benavides, C.E. (1990) Germinación y morfología de Hymenaea courbaril L. (Caesalpinaceae). Revista de Biologia Tropical 38, 9198.Google Scholar
Foley, M.E. (2001) Seed dormancy: an update on terminology, physiological genetics, and quantitative trait loci regulating germinability. Weed Science 49, 305317.CrossRefGoogle Scholar
Foley, M.E. and Fennimore, S.A. (1998) Genetic basis for seed dormancy. Seed Science Research 8, 173182.CrossRefGoogle Scholar
Hilhorst, H.W.M. (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Science Research 5, 6173.CrossRefGoogle Scholar
Jones, H.D. (1999) Seeds get a wake-up call. Biologist 46, 6569.Google Scholar
Jones, T.A. and Nielson, D.C. (1999) Intrapopulation genetic variation for seed dormancy in Indian ricegrass. Journal of Range Management 52, 646650.CrossRefGoogle Scholar
Koornneef, M., Bentsink, L. and Hilhorst, H. (2002) Seed dormancy and germination. Current Opinion in Plant Biology 5, 3336.CrossRefGoogle ScholarPubMed
Lacerda, D.R., Acedo, M.D.P., Lemos, Filho J.P. and Lovato, M.B. (2001) Genetic diversity and structure of natural populations of Plathymenia reticulata (Mimosoideae), a tropical tree from the Brazilian cerrado. Molecular Ecology 10, 11431152.CrossRefGoogle ScholarPubMed
Lemos Filho, J.P. and Mendonça Filho, C.V. (2000) Seasonal changes in the water status of three woody legumes from Atlantic Forest, Caratinga, Brazil. Journal of Tropical Ecology 16, 2132.CrossRefGoogle Scholar
Lemos Filho, J.P., Guerra, S.T.M., Lovato, M.B. and Scotti, M.R.M.M. (1997) Germinação de sementes de Senna macranthera, Senna multijuga e Stryphnodendron polyphyllum. Pesquisa Agropecuária Brasileira 32, 357361.Google Scholar
Li, B. and Foley, M.E. (1997) Genetic and molecular control of seed dormancy. Trends in Plant Science 2, 384389.CrossRefGoogle Scholar
Lorenzi, H. (1992) Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa, Ed. Plantarum.Google Scholar
Lovato, M.B. and Martins, P.S. (1997) Genetic variability in salt tolerance during germination of Stylosanthes humilis H.B.K. and association between salt tolerance and isozymes. Brazilian Journal of Genetics 20, 435441.CrossRefGoogle Scholar
Loveless, M.D. and Hamrick, J.L. (1984) Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics 15, 6595.CrossRefGoogle Scholar
Maluf, A.M. (1993) Estudo da herdabilidade da capacidade germinativa e da dormência de sementes de Senna multijuga. Pesquisa Agropecuária Brasileira 28, 14171423.Google Scholar
Meyer, S.E. and Pendleton, R.L. (2000) Genetic regulation of seed dormancy in Purshia tridentata (Rosaceae). Annals of Botany 85, 521529.CrossRefGoogle Scholar
Mohamed-Yasseen, Y., Barringer, S.A., Splittstoesser, W.E. and Constanza, S. (1994) The role of seed coats in seed viability. The Botanical Review 60, 426439.CrossRefGoogle Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G. de, Fonseca, G.A.B. and Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853858.CrossRefGoogle ScholarPubMed
Rolston, M.P. (1978) Water impermeable seed dormancy. The Botanical Review 44, 365396.CrossRefGoogle Scholar
Santarém, E.R. and Aquila, M.E.A. (1995) Influência de métodos de superação da dormência e do armazenamento na germinação de sementes de Senna macranthera (Colladon) Irwin & Barneby (Leguminosae). Revista Brasileira de Sementes 17, 205209.CrossRefGoogle Scholar
Templeton, A.R. and Levin, D.A. (1979) Evolutionary consequences of seed pools. American Naturalist 114, 232249.CrossRefGoogle Scholar
Tieu, A., Dixon, K.W., Meney, K.A., Sivasithamparam, K. and Barrett, R.L. (2001) Spatial and developmental variation in seed dormancy characteristics in the fire-responsive species Anigozanthos manglesii (Haemodoraceae) from Western Australia. Annals of Botany 88, 1926.CrossRefGoogle Scholar
Vázquez-Yanes, C. and Orozco-Segovia, A. (1993) Patterns of seed longevity and germination in the tropical rainforest. Annual Review of Ecology and Systematics 24, 6987.CrossRefGoogle Scholar
Veasey, E.A. and Martins, P.S. (1991) Variability in seed dormancy and germination potential in Desmodium Desv. (Leguminosae). Revista Brasileira de Genética 14, 527545.Google Scholar