Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T13:17:51.119Z Has data issue: false hasContentIssue false

Seed traits favouring dispersal and establishment of six epiphytic Tillandsia (Bromeliaceae) species

Published online by Cambridge University Press:  17 July 2018

Nahlleli Chilpa-Galván
Affiliation:
Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43. Núm. 130. Colonia Chuburná de Hidalgo, 97205 Mérida, Yucatán, México
Judith Márquez-Guzmán
Affiliation:
Facultad de Ciencias, Laboratorio de Desarrollo en Plantas, Universidad Nacional Autónoma de México, UNAM, 04510, D.F., México
Gerhard Zotz
Affiliation:
Carl von Ossietzky University Oldenburg, Institute for Biology and Environmental Sciences, Functional Ecology, Box 2503, D-26111 Oldenburg, Germany
Ileana Echevarría-Machado
Affiliation:
Unidad de Bioquímica y Biología Molecular, Centro de Investigación Científica de Yucatán, A.C., Calle 43. Núm. 130. Colonia Chuburná de Hidalgo, 97205 Mérida, Yucatán, México
José Luis Andrade
Affiliation:
Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43. Núm. 130. Colonia Chuburná de Hidalgo, 97205 Mérida, Yucatán, México
Celene Espadas-Manrique
Affiliation:
Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43. Núm. 130. Colonia Chuburná de Hidalgo, 97205 Mérida, Yucatán, México
Casandra Reyes-García*
Affiliation:
Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, A.C., Calle 43. Núm. 130. Colonia Chuburná de Hidalgo, 97205 Mérida, Yucatán, México
*
Author for correspondence: Casandra Reyes-García, Email: [email protected]

Abstract

There are a number of studies describing the gross range of morpho-anatomical variability in epiphytic Tillandsia species, but the interspecific variation in seed traits remain largely unexplored, although these play an important role in determining dispersal and establishment success. In order to evaluate interspecific variation in seed morphology, anatomy and germination, we sampled six Tillandsia species from the Yucatan peninsula, Mexico, distributed along a precipitation gradient. We studied morpho-anatomical traits (seed length, seed mass, ratio of coma to seed, ratio of embryo to endosperm), seed terminal velocity in still air, and performed histochemical analyses and germination trials under controlled conditions. Tillandsia recurvata differs from the other five species in the structure of the plumose coma; it was the only species lacking an endosperm and showed distinct seedling development. Among the species, bigger seeds were related to longer comas, and had higher germinability. Overall, seed terminal velocity was invariably slow, compared with reports of other anemochorous species, suggesting a high dispersal potential. Taxonomical and ecological implications of our results are discussed.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackerly, D (2009) Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences of the USA 106, 1969919706.Google Scholar
Augspurger, CK (1986) Morphology and dispersal potential of wind-dispersed diaspores of neotropical trees. American Journal of Botany 73, 353363.Google Scholar
Bader, MY, Menke, G and Zotz, G (2009) A pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa. Functional Ecology 23, 472479.Google Scholar
Barfuss, MHJ, Till, W, Leme, EMC, Pinzón, JP, Manzanares, JM, Halbritter, H, Samuel, R and Brown, GK (2016) Taxonomic revision of Bromeliaceae subfam. Tillandsioideae based on a multi-locus DNA sequence phylogeny and morphology. Phytotaxa 279, 197.Google Scholar
Benzing, DH (1982) A hair is just a hair: or is it? [Scanning electron micrograph of a Tillandsia balbisiana seed coma]. Journal-Bromeliad Society (USA).Google Scholar
Benzing, DH (2000) Bromeliaceae: Profile of an Adaptive Radiation. Cambridge University Press, UK.Google Scholar
Bernal, R, Valverde, T and Hernández-Rosas, L (2005) Habitat preference of the epiphyte Tillandsia recurvata (Bromeliaceae) in a semi-desert environment in Central Mexico. Canadian Journal of Botany 83, 12381247.Google Scholar
Cach-Pérez, MJ, Andrade, JL, Chilpa-Galván, N, Tamayo-Chim, M, Orellana, R and Reyes-García, C (2013) Climatic and structural factors influencing epiphytic bromeliad community assemblage along a gradient of water-limited environments in the Yucatan Peninsula, Mexico. Tropical Conservation Science 6, 283302.Google Scholar
Cascante-Marín, A, von Meijenfeldt, N, de Leeuw, HMH, Wolf, JHD, Oostermeijer, JGB and den Nijs, JCM (2009) Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. Journal of Tropical Ecology 25, 6373.Google Scholar
Cecchi-Fiordi, A, Palandri, MR, Turicchia, S, Tani, G, and Di Falco, P (2001) Characterization of the seed reserves in Tillandsia (Bromeliaceae) and ultrastructural aspects of their use at germination. Caryologia 54, 116.Google Scholar
Corredor-Prado, JP, Schmidt, EC, Steinmacher, DA, Guerra, MP, Bouzon, ZL, Dal Vesco, LL and Pescador, R (2014) Seed morphology of Vriesea friburgensis var. paludosa L.B. Sm. (Bromeliaceae). Hoehnea 41, 553562.Google Scholar
Dalling, JW (2002) Ecología de semillas, pp. 345375 in Guariguata, MR and Catan, GH (eds), Ecología y conservación de bosques neotropicales. Ediciones LUR, Costa Rica.Google Scholar
Davidse, G, Sánchez, MS and Chater, AO (1994) Flora mesoamericana: Alismataceae a Cyperaceae. UNAM, Missouri Botanical Garden and the Natural History Museum (London).Google Scholar
Duarte, AA, de Lemos-Filho, JP and Marques, AR (2017) Seed germination of bromeliad species from the campo rupestre: thermal time requirements and response under predicted climate-change scenarios. Flora 238, 119128.Google Scholar
Espejo-Serna, A (2002) Viridantha, un género nuevo de Bromeliaceae (Tillandsioideae) endémico de México. Acta Botanica Mexicana 60, 2535.Google Scholar
Finch-Savage, WE and Leubner-Metzger, G (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523.Google Scholar
García-Franco, JG and Rico-Gray, V (1988) Experiments on seed dispersal and deposition patterns of epiphytes – the case of Tillandsia deppeana Steudel (Bromeliaceae). Phytologia 65, 7378.Google Scholar
Grant, JR (1995) Bromelienstudien. The resurrection of Alcantarea and Werauhia, a new genus. Tropische und Subtropische Pflanzenwelt 91, 157.Google Scholar
Greene, D and Quesada, M (2005) Seed size and aerodynamic constraints within the Bombacaceae. American Journal of Botany 9, 9981005.Google Scholar
Madison, M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2, 113.Google Scholar
Magalhães, R and Mariath, JEA (2012) Seed morphoanatomy and its systematic relevance to Tillandsioideae (Bromeliaceae). Plant Systematics and Evolution 298, 18811895.Google Scholar
Martin, AC (1946) The comparative internal morphology of seeds. American Midland Naturalist 36, 513660.Google Scholar
Marques, AR, Atman, AP, Silveira, FA and de Lemos-Filho, JP (2014) Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation. Plant Ecology 215, 517529.Google Scholar
Márquez-Guzmán, J, Wong, R, Pérez-Pacheco, M, López-Curto, ML, and Murguía-Sánchez, G (2016) Técnicas de laboratorio para el estudio del desarrollo en angiospermas. Coordinación en Servicios Editoriales, Facultad de Ciencias, UNAM, México.Google Scholar
Matlack, GR (1987) Diaspore size, shape, and fall behavior in wind-dispersed plant species. American Journal of Botany 74, 11501160.Google Scholar
Mazer, SJ (1989) Ecological, taxonomic, and life history correlates of seed mass among Indiana dune angiosperms. Ecological Monographs 59, 153175.Google Scholar
Mondragón, D and Calvo-Irabien, LM (2006) Seed dispersal and germination of the epiphyte Tillandsia brachycaulos (Bromeliaceae) in a tropical dry forest, Mexico. The Southwestern Naturalist 51, 462470.Google Scholar
Mondragón, D, Valverde, T and Hernández-Apolinar, M (2015) Population ecology of epiphytic angiosperms: a review. Tropical Ecology 56, 139.Google Scholar
Montes-Recinas, S, Márquez-Guzmán, J and Orozco-Segovia, A (2012). Temperature and water requirements for germination and effects of discontinuous hydration on germinated seed survival in Tillandsia recurvata L. Plant Ecology 213, 10691079.Google Scholar
Müller, LL, Albach, D and Zotz, G (2017) ‘Are 3°C too much?’ – thermal niche breadth in Bromeliaceae and global warming. Journal of Ecology 105, 507516.Google Scholar
Palací, CA, Brown, GK, and Tuthill, DE (2004) The seeds of Catopsis (Bromeliaceae: Tillandsioideae). Systematic Botany 29, 518527.Google Scholar
Paz, H and Martínez-Ramos, M (2003) Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology 84, 439450.Google Scholar
Peco, B, Rico, L and Azcárate, FM (2009) Seed size and response to rainfall patterns in annual grasslands: 16 years of permanent plot data. Journal of Vegetation Science 20, 816.Google Scholar
Pittendrigh, CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad. I-The bromeliad flora. Evolution 2, 5889.Google Scholar
Ramírez, I, Carnevali, G, and Chi, F (2004) Guía Ilustrada de las Bromeliaceae de la porción mexicana de la Península de Yucatán, 1st edn. Centro de Investigación Científica, A.C., Mérida.Google Scholar
Ranal, M. A., Santana, D. G. D., Ferreira, W. R., and Mendes-Rodrigues, C (2009) Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany 32, 849855.Google Scholar
Rasband, WS (2014) ImageJ, US National Institutes of Health, Bethesda, MD, USA; https://imagej.nih.gov/ij/, 1997–2016 (accessed 12 June 2014).Google Scholar
Reyes-García, C, Mejia-Chang, M and Griffiths, H (2012) High but not dry: diverse epiphytic bromeliads adaptations to exposure within a seasonally dry tropical forest community. New Phytologist 193, 745754.Google Scholar
Scatena, VL, Segecin, S and Coan, AI (2006) Seed morphology and post-seminal development of Tillandsia L. (Bromeliaceae) from the ‘Campos Gerais’, Paraná, Southern Brazil. Brazilian Archives of Biology and Technology, an International Journal 49, 945951.Google Scholar
Sheldon, JC and Burrows, FM (1973) The dispersal effectiveness of the achene-pappus units of selected Compositae in steady winds with convection. New Phytologist 72, 665675.Google Scholar
Smith, LB and Downs, RJ (1974) Tillandsioideae (Bromeliaceae), pp. 6611492 in Smith, LB and Downs, RJ (eds), Flora Neotropica. Monograph 14:2. Hafner Press, New York.Google Scholar
Spencer, MA and Smith, LB (1993) Racinaea, a new genus of Bromeliaceae (Tillandsioideae). Phytologia 74, 151160.Google Scholar
Sosa-Luría, D, Chávez-Servia, JL, Mondragón-Chaparro, D, Estrada-Gómez, JA and Ramírez-Vallejo, P (2012). Viabilidad y germinación de semillas de seis especies de Tillandsia (Bromeliaceae) de Oaxaca, México. Revista Fitotecnia Mexicana 35, 3742.Google Scholar
Stebbins, GL (1974) Flowering Plants. Evolution Above the Species Level, 1st edn. The Belknap Press of Harvard University Press, Cambridge, UK.Google Scholar
The Plant List (2013) Version 1.1. Published online: http://www.theplantlist.org/ (accessed 16 June 2017).Google Scholar
Valencia-Díaz, S, Flores-Palacios, A, Rodríguez-López, V, Ventura-Zapata, E and Jiménez-Aparicio, A (2010). Effect of host bark extracts on seed germination in Tillandsia recurvata, an epiphytic bromeliad. Journal of Tropical Ecology 26, 571581.Google Scholar
Vandelook, F, Janssens, SB and Probert, RJ (2012) Relative embryo length as an adaptation to habitat and life cycle in Apiaceae. New Phytologist 195, 479487.Google Scholar
Vivrette, NJ (1995) Distribution and ecological significance of seed-embryo types in Mediterranean climates in California, Chile, and Australia, pp. 274288, in Arroyo, MTK, Zedler, PH and Fox, MD (eds), Ecology and Biogeography of Mediterranean Ecosystems in Chile, California, and Australia. Springer, New York, USA.Google Scholar
Wester, S and Zotz, G (2011) Seed comas of bromeliads promote germination and early seedling growth by wick-like water uptake. Journal of Tropical Ecology 27, 115119.Google Scholar
Westoby, M, Falster, DS, Moles, AT, Vesk, PA and Wright, IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 3, 125–59.Google Scholar
Zotz, G and Asshoff, R (2010) Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen. Plant Biology 12, 108113.Google Scholar
Zotz, G, Bogusch, W, Hietz, P and Ketteler, N (2010) Growth of epiphytic bromeliads in a changing world: the effect of elevated CO2 and varying water and nutrient supply. Acta Oecologica 36, 659665.Google Scholar
Supplementary material: File

Chilpa-Galván et al. supplementary material

Chilpa-Galván et al. supplementary material 1

Download Chilpa-Galván et al. supplementary material(File)
File 1.3 MB