Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T09:21:32.009Z Has data issue: false hasContentIssue false

Seed mass, germination and seedling traits for some central Argentinian cacti

Published online by Cambridge University Press:  17 February 2014

María Sosa Pivatto
Affiliation:
Escuela de Biología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, CP 5000, Córdoba Argentina
Guillermo Funes
Affiliation:
Instituto Multidisciplinario de Biología Vegetal (FCEFyN, CONICET-UNC), Av. Vélez Sarsfield 1611, CC495, CP5000, Córdoba, Argentina
Ana E. Ferreras
Affiliation:
Instituto Multidisciplinario de Biología Vegetal (FCEFyN, CONICET-UNC), Av. Vélez Sarsfield 1611, CC495, CP5000, Córdoba, Argentina
Diego E. Gurvich*
Affiliation:
Instituto Multidisciplinario de Biología Vegetal (FCEFyN, CONICET-UNC), Av. Vélez Sarsfield 1611, CC495, CP5000, Córdoba, Argentina
*
*Correspondence E-mail: [email protected]

Abstract

Seed size is one of the most important traits in the regenerative phase of a plant's life cycle; however, for cactus species the relationship of seed size and germination characteristics and seedling traits is still unclear. We studied the relationship between seed mass and germination and seedling characteristics in 17 cactus species from central Argentina, belonging to different genera and life forms. We measured seed mass, total seed germination, light requirements for germination and mean time to germination for these 17 cacti species; in addition, we recorded seedling size and shape in 15 species. To test light requirements we performed germination experiments under laboratory conditions at 25/15°C (day/night temperatures) and under light or dark conditions. We also calculated seedling volume by measuring seedling height and width. A shape index was obtained by dividing height by width (a value of 1 indicates ‘globose’ seedlings, whereas, as this value increases, seedlings become ‘columnar’). We found no significant relationship between seed mass and any of the germination characteristics considered. However, species with heavier seeds produced bigger seedlings, which were more cylindrical. Adult growth was not totally determined by seedling ‘growth form’, because some species that had globose seedlings were columnar at the adult stage.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Aguirre, M.G. and Montaña, C (1997) Germinación y supervivencia de cinco especies de cactáceas. Acta Botánica Mexicana 40, 4358.Google Scholar
Anderson, E.F. (2001) The cactus family. Portland, Timber Press.Google Scholar
Baraloto, C., Forget, P.M. and Goldberg, D.E. (2005) Seed mass, seedling size and neotropical tree seedling establishment. Journal of Ecology 53, 11561166.CrossRefGoogle Scholar
Bárcenas-Argüello, M.L., Lauro López-Mata, L., Terrazas, T. and García-Moya, E. (2013) Seed germination of three Cephalocereus (Cactaceae) endemic species from the Tehuantepec Isthmus, México. Polibotánica 36, 105116.Google Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds: Ecology, biogeography and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Bowers, J.E. and Pierson, E.A. (2001) Implications of seed size for seedling survival in Carnegiea gigantea and Ferocactus wislizeni (Cactaceae). The Southwestern Naturalist 46, 272281.Google Scholar
Bu, H.Y., Chen, X.L., Xu, X.L., Liu, K., Wen, S.J. and Du, G.Z. (2007) Community-wide germination strategies in an alpine meadow on the eastern Qinghai-Tibet plateau: phylogenetic and life-history correlates. Plant Ecology 191, 127149.CrossRefGoogle Scholar
Canty, A. and Ripley, B. (2011) boot: Bootstrap R (S-Plus) Functions. R package version 1.3–3.1.Google Scholar
Cheib, A. and García, Q.S. (2012) Longevity and germination ecology of seeds of endemic Cactaceae species from high-altitude sites in south-eastern Brazil. Seed Science Research 22, 4553.Google Scholar
Chen, Z.H., Peng, J.F., Zhang, D.M. and Zhao, J.G. (2002) Seed germination and storage of woody species in the lower subtropical forest. Acta Botanica Sinica 44, 14691476.Google Scholar
Daws, M.I., Crabtree, L., Dalling, J.W., Mullins, C.E. and Burslem, D.F. (2008) Germination responses to water potential in Neotropical pioneers suggest large-seeded species take more risks. Annals of Botany 102, 945951.CrossRefGoogle ScholarPubMed
Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A., Montserrat-Martí, G., Grime, J.P., Zarrinkamar, F., Asri, Y., Band, S.R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M.C., Shirvany, F.A., Vendramini, F., Yazdani, S., Abbas-Azimi, R., Bogaard, A., Boustani, S., Charles, M., Dehghan, M., de Torres-Espuny, L., Falczuk, V., Guerrero-Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-Martínez, M., Romo-Díez, A., Shaw, S., Siavash, B., Villar-Salvador, P. and Zak, M.R. (2004) The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science 15, 295304.Google Scholar
Fenner, M. and Thompson, K. (2005) The ecology of seeds. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Flores, J., Jurado, E. and Arredondo, A. (2006) Effect of light on germination of seeds of Cactaceae from the Chihuahuan Desert, Mexico. Seed Science Research 16, 149155.Google Scholar
Flores, J., Jurado, E., Chapa-Vargas, L., Ceroni-Stuva, A., Dávila-Aranda, P., Galíndez, G., Gurvich, D.E., León-Lobos, P., Ordóñez, C., Ortega-Baes, P., Ramírez-Bullón, P., Sandoval, A., Seal, C.E., Ullian, T. and Pritchard, H.W (2011) Seeds photoblastism and its relationship with some plant traits in 136 cacti taxa. Environmental and Experimental Botany 71, 7988.Google Scholar
Funes, G., Basconcelo, S., Díaz, S. and Cabido, M. (1999) Seed size and shape are good predictors of seed persistence in soil in temperate mountain grasslands of Argentina. Seed Science Research 9, 341345.Google Scholar
Funes, G., Díaz, S. and Venier, P. (2009) La temperatura como principal factor determinante de la germinación en especies del Chaco árido de Argentina. Ecología Austral 19, 129138.Google Scholar
Galíndez, G., Ortega-Baes, P., Daws, M.I., Sühring, S., Scopel, A.L. and Pritchard, H.W. (2009) Seed mass and germination in Asteraceae species of Argentina. Seed Science Technology 37, 786790.Google Scholar
Giorgis, M.A., Cingolani, A.M., Chiarini, F., Chiapella, J., Barboza, G., Espinar, L.A., Morero, R., Gurvich, D.E., Tecco, P.A., Subils, R. and Cabido, M. (2011) Composición florística del Bosque Chaqueño serrano de la provincia de Córdoba, Argentina. Kurtziana 36, 943.Google Scholar
Grime, J.P. and Pierce, S. (2012) The evolutionary strategies that shape ecosystems. Oxford, Wiley-Blackwell.Google Scholar
Guerrero, P.C., Alves-Burgos, L., Peña-Gómez, F.T. and Bustamante, R.O. (2011) Positive photoblastic response of seed germination in Eriosyce subgen. Neoporteria (Britton & Rose) Helmut Walter (Cactaceae). Gayana Botanica 68, 110113.Google Scholar
Gurvich, D.E., Demaio, P. and Giorgis, M.A. (2006) The diverse globose cacti community of the Argentina's Sierras Chicas: Ecology and Conservation. Cactus and Succulent Journal 78, 224230.Google Scholar
Gurvich, D.E., Funes, G., Giorgis, M.A. and Demaio, P. (2008) Germination characteristics of four Argentinean endemics Gymnocalycium (Cactaceae) species with different flowering phenologies. Natural Areas Journal 28, 104108.Google Scholar
Leishman, M.R., Wright, I.J., Moles, A.T. and Westoby, M. (2000) The evolutionary ecology of seed size. pp. 3157 in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities. Wallingford, CABI Publishing.Google Scholar
Liu, Z., Yan, Q., Li, X., Ma, J. and Ling, X. (2007) Seed mass and shape, germination and plant abundance in a desertified grassland in northeastern Inner Mongolia, China. Journal of Arid Environments 69, 198211.Google Scholar
Lönnberg, K. and Eriksson, O. (2013) Rules of seed size game: contests between large-seeded and small-seeded species. Oikos 122, 10801084.Google Scholar
López, R.P. (2003) Phytogeographical relations of the Andean dry valleys of Bolivia. Journal of Biogeography 30, 16591668.Google Scholar
Loza-Cornejo, S., López-Mata, L. and Terrazas, T. (2008) Morphological seed traits and germination of six species of Pachycereae (Cactaceae). Journal of the Professional Association for Cactus Development 10, 7184.Google Scholar
Manly, B.R.J. (2006) Randomization, bootstrap and Monte Carlo methods in biology. Florida, Chapman & Hall.Google Scholar
Milberg, P., Andersson, L. and Thompson, K. (2000) Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research 10, 99104.Google Scholar
Moles, A. and Leishman, M. (2008) The seedling as part of a plant's life history strategy. pp. 217238 in Leck, M.; Parker, T.; Simpson, R. (Eds) Seedling ecology and evolution. Cambridge, Cambridge University Press.Google Scholar
Moré, M., Amorim, F.W., Benitez-Vieryra, S., Medina, M.A., Sazima, M. and Cocucci, A. (2012) Armament imbalances: Match and mismatch in plant-pollinator traits of highly specialized long-spurred Orchids. PLoS ONE. doi:10.1371/journal.pone.0041878.Google Scholar
Morgan, J.W. (1998) Comparative germination responses of 28 temperate grassland species. Australian Journal of Botany 46, 209219.Google Scholar
Norden, N., Daws, M.I., Antoine, C., Gonzalez, M.A., Garwood, N.C. and Chave, J. (2009) The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Functional Ecology 23, 203210.Google Scholar
Ortega-Baes, P. and Godínez-Alvarez, H. (2006) Global diversity and conservation priorities in the Cactaceae. Biodiversity and Conservation 15, 817827.Google Scholar
Ortega-Baes, P., Aparicio González, M., Galíndez, G., del Fueyo, P., Sühring, S. and Rojas-Aréchiga, M. (2010) Are cactus growth forms related to germination responses to light? A test using Echinopsis species. Acta Oecologica 36, 339342.Google Scholar
Paz, H., Mazer, S.J. and Martinez-Ramos, M. (1999) Seed mass, seedling emergence, and environmental factors in seven rain forest Psychotria (Rubiaceae). Ecology 80, 15941606.Google Scholar
Pons, T. (2000) Seed responses to light. pp. 237260 in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities. Wallingford, UK, CAB International.Google Scholar
R Development Core Team (2012) R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing, Available at http://www.R-project.org (accessed accessed 30 November 2013).Google Scholar
Rojas-Aréchiga, M. and Vázquez-Yañes, C. (2000) Cactus seed germination: a review. Journal of Arid Environments 44, 85104.Google Scholar
Rojas-Aréchiga, M., Orozco-Segovia, A. and Vázquez-Yánes, C. (1997) Effect of light on germination of seven species of cacti from the Zapotitlan Valley in Puebla, México. Journal of Arid Environments 36, 571578.Google Scholar
Rojas-Aréchiga, M., Mandujano, M.C. and Golubov, J.K. (2012) Seed size and photoblastism in species belonging to tribe Cacteae (Cactaceae). Journal of Plant Research 126, 373386.CrossRefGoogle ScholarPubMed
Rojas-Sandoval, J. and Meléndez-Ackerman, E. (2013) Population dynamics of a threatened cactus species: general assessment and effects of matrix dimensionality. Population Ecology 55, 479491.Google Scholar
Sautu, A., Baskin, J.M., Baskin, C.C. and Condit, R. (2006) Studies on the seed biology of 100 native species of trees in a seasonal moist tropical forest, Panama, Central America. Forest Ecology and Management 234, 245263.Google Scholar
Seiwa, K. and Kikuzawa, K. (1996) Importance of seed size for the establishment of seedlings of five deciduous broad-leaved tree species. Plant Ecology 123, 5164.Google Scholar
Shipley, B. and Parent, M. (1991) Germination responses of 64 wetlands species in relation to seed size, minimum time to reproduction and seedling relative growth rate. Functional Ecology 5, 111118.Google Scholar
Shipley, B. and Peters, R.H. (1990) The allometry of seed weight and seedling relative growth rate. Functional Ecology 4, 523529.Google Scholar
Thapliyal, R. and Phartyal, S.S. (2005) Dispersal and germination syndromes of tree seeds in a monsoonal forest in northern India. Seed Science Research 15, 2942.CrossRefGoogle Scholar
Thompson, K., Band, S.R. and Hodgson, J.G. (1993) Seed size and shape predict persistence in soil. Functional Ecology 7, 236241.Google Scholar
van Mölken, T., Jorritsma-Wienk, L.D., van Hoek, P.H.W. and de Kroon, H. (2005) Only seed size matters for germination in different populations of the dimorphic Tragopogon pratensis subsp. pratensis (Asteraceae). American Journal of Botany 92, 432437.Google Scholar
Wang, J.H., Baskin, C.C., Cui, X.L. and Du, G.Z. (2009) Effect of phylogeny, life history and habitat correlates on seed germination of 69 arid and semi-arid zone species from northwest China. Evolutionary Ecology 23, 827846.Google Scholar