Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T03:24:11.247Z Has data issue: false hasContentIssue false

Seed chitinases

Published online by Cambridge University Press:  22 February 2007

L. Gomez
Affiliation:
Departamento de Biotecnologia, ETS Ingenieros de Montes, Universidad Politecnica de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
I. Allona
Affiliation:
Departamento de Biotecnologia, ETS Ingenieros de Montes, Universidad Politecnica de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
R. Casado
Affiliation:
Departamento de Biotecnologia, ETS Ingenieros de Montes, Universidad Politecnica de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
C. Aragoncillo*
Affiliation:
Departamento de Biotecnologia, ETS Ingenieros de Montes, Universidad Politecnica de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
*
*Correspondence Fax: +34-91-5439557 Email: [email protected]

Abstract

Specific chitinases accumulate in seeds of many species as part of their normal developmental programme. Some chitinases can also be induced in developing and germinating seeds in response to microbial attack. All known seed isoforms belong to classes I, II, IV and VII, which are encoded by Chia genes, as well as to the more divergent class III encoded by Chib genes. The study of seed-specific chitinases has contributed significantly to current knowledge of this ubiquitous protein family, including antifungal properties, structure, specificity and catalytic mechanism. Indeed, the first plant chitinase for which a three-dimensional structure was solved had been isolated from barley seeds. Moreover, the finding that a chitinase could rescue a somatic embryo mutant was the first evidence of a non-defensive function. Several lines of evidence have substantiated the biotechnological potential of chitinases to counter plant fungal disease. The recent identification of several seed and fruit chitinases as major panallergens should be taken into account when selecting the genes to be introduced into food crops.

Type
Invited Review Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alenius, H., Kalkkinen, N., Lukka, M., Reunala, T., Turjanmaa, K., Makinen-Kiljunen, S., Yip, E. and Palosuo, T. (1995) Prohevein from the rubber tree (Hevea brasilensis) is a major latex allergen. Clinical and Experimental Allergy 25, 659665.CrossRefGoogle Scholar
Allona, I., Collada, C., Casado, R., Paz-Ares, J. and Aragoncillo, C. (1996) Bacterial expression of an active class Ib chitinase from Castanea sativa cotyledons. Plant Molecular Biology 32, 11711176.CrossRefGoogle ScholarPubMed
Andersen, M.D., Jensen, A., Robertus, J.D., Leah, R. and Skriver, J.K. (1997) Heterologous expression and characterization of wild-type and mutant forms of a 26 kDa endochitinase from barley (Hordeum vulgare L.). Biochemical Journal 322, 815822.CrossRefGoogle ScholarPubMed
Araki, T. and Torikata, T. (1995) Structural classification of plant chitinases: two subclasses in class I and class II chitinases. Bioscience, Biotechnology and Biochemistry 59, 336338.CrossRefGoogle Scholar
Armand, S., Tomita, H., Heyraud, A., Gey, C., Watanabe, T. and Henrissat, B. (1994) Stereochemical course of the hydrolysis reaction catalyzed by chitinase A1 and chitinase D from Bacillus circulans WL-12. FEBS Letters 343, 177180.CrossRefGoogle ScholarPubMed
Ary, M.B., Richardson, M. and Shewry, P.R. (1989) Purification and characterization of an insect α-amylase inhibitor/endochitinase from seeds of Job's Tears (Coix lachryma-jobi). Biochimica et Biophysica Acta 999, 260266.CrossRefGoogle ScholarPubMed
Beezhold, D.H., Sussman, G.L., Liss, G.M. and Chang, N.S. (1996) Latex allergy can induce clinical reactions to specific foods. Clinical and Experimental Allergy 26, 416422.CrossRefGoogle ScholarPubMed
Benhamou, N., Broglie, K., Broglie, R. and Chet, I. (1993) Antifungal effect of bean endochitinase on Rhizoctonia solani: ultrastructural changes and cytochemical aspects of chitin breakdown. Canadian Journal of Microbiology 39, 318328.CrossRefGoogle ScholarPubMed
Blanco, C., Carrillo, T., Castillo, R., Quiralte, J. and Cuevas, M. (1994) Latex allergy: clinical features and crossreactivity with fruits. Annals of Allergy 73, 309314.Google ScholarPubMed
Blanco, C., Diaz-Perales, A., Collada, C., Sanchez-Monge, R., Aragoncillo, C., Castillo, R., Ortega, N., Alvarez, M., Carrillo, T. and Salcedo, G. (1999) Class I chitinases as potential panallergens involved in the latex-fruit syndrome. Journal of Allergy and Clinical Immunology 103, 507513.CrossRefGoogle Scholar
Bol, J.F., Linthorst, H.J.M. and Cornelissen, B.J.C. (1990) Plant pathogenesis-related proteins induced by virus infection. Annual Review of Phytopathology 28, 113138.CrossRefGoogle Scholar
Boller, T. (1988) Ethylene and the regulation of antifungal hydrolases in plants. pp. 145174in Miflin, B.J. (Ed.) Oxford surveys of plant molecular and cell biology, Vol. 5. Oxford, Clarendon Press.Google Scholar
Boller, T. (1993) Antimicrobial functions of the plant hydrolases, chitinases and β-1,3-glucanase. pp. 391400in Fritig, B.; Legrand, M. (Eds) Mechanisms of plant defense responses. Dordrecht, Kluwer Academic.CrossRefGoogle Scholar
Boller, T., Gehri, A., Mauch, F. and Vögeli, U. (1983) Chitinase in bean leaves: induction by ethylene, purification, properties and possible function. Planta 157, 2231.CrossRefGoogle ScholarPubMed
Bortone, K., Monzingo, A.F., Ernst, S. and Robertus, J.D. (2002) The structure of an allosamidin complex with the Coccidioides immitis chitinase defines a role for a second acid residue in substrate-assisted mechanism. Journal of Molecular Biology 320, 293302.CrossRefGoogle ScholarPubMed
Brameld, K.A. and Goddard, W.A. (1998) The role of enzyme distortion in the single displacement mechanism of family 19 chitinases. Proceedings of the National Academy of Sciences, USA 95, 42764281.CrossRefGoogle ScholarPubMed
Broekaert, W.F., van Parijs, J., Allen, A.K. and Peumans, W.J. (1988) Comparison of some molecular, enzymatic and antifungal properties of chitinases from thornapple, tobacco and wheat. Physiological and Molecular Plant Pathology 33, 319331.CrossRefGoogle Scholar
Broekaert, W.F., van Parijs, J., Leyns, F., Joos, H. and Peumans, W.J. (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245, 11001102.CrossRefGoogle ScholarPubMed
Broekaert, W.F., Mariën, W., Terras, F.R.G., de Bolle, M.F.C., Proost, P., van Damme, J., Dillen, L., Claeys, M., Rees, S.B., van der Leyden, J. and Cammue, B.P.A. (1992) Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycinerich domain of chitin-binding proteins. Biochemistry 31, 43084314.CrossRefGoogle Scholar
Broekaert, W.F., Cammue, B.P.A., de Bolle, M.F.C., Thevissen, K., De Samblanx, G.W. and Osborn, R.W. (1997) Antimicrobial peptides from plants. Critical Reviews in Plant Sciences 16, 297323.CrossRefGoogle Scholar
Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J. and Broglie, R. (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254, 11941197.CrossRefGoogle Scholar
Brunner, F., Stintzi, A., Fritig, B. and Legrand, M. (1998) Substrate specificities of tobacco chitinases. Plant Journal 14, 225234.CrossRefGoogle ScholarPubMed
Bueso, F.J., Waniska, R.D., Rooney, W.L. and Bejosano, F.P. (2000) Activity of antifungal proteins against mold in sorghum caryopses in the field. Journal of Agricultural and Food Chemistry 48, 810816.CrossRefGoogle ScholarPubMed
Caruso, C., Chilosi, G., Caporale, C., Leonardi, L., Bertini, L., Magro, P. and Buonocore, V. (1999) Induction of pathogenesis-related proteins in germinating wheat seeds infected with Fusarium culmorum. Plant Science 140, 8797.CrossRefGoogle Scholar
Chrispeels, M.J. (1991) Sorting of proteins in the secretory system. Annual Review of Plant Physiology and Plant Molecular Biology 42, 2153.CrossRefGoogle Scholar
Chrispeels, M.J. and Raikhel, N.V. (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3, 19.Google ScholarPubMed
Collada, C., Casado, R., Fraile, A. and Aragoncillo, C. (1992) Basic endochitinases are major proteins in Castanea sativa cotyledons. Plant Physiology 100, 778783.CrossRefGoogle ScholarPubMed
Collada, C., Casado, R. and Aragoncillo, C. (1993) Endochitinases from Castanea crenata cotyledons. Journal of Agricultural and Food Chemistry 41, 17161718.CrossRefGoogle Scholar
Collinge, D.B., Kragh, K.M., Mikkelsen, J.D., Nielsen, K.K., Rasmussen, U. and Vad, K. (1993) Plant chitinases. Plant Journal 3, 3140.CrossRefGoogle ScholarPubMed
Colucci, G., Machuka, J. and Chrispeels, M.J. (1999) cDNA cloning of a class III acid chitinase from the African yam bean (Sphenostylis stenocarpa) (Accession No. AF137070) (PGR-99-075). Plant Physiology 120, 633.Google Scholar
Cordero, M.J., Raventos, D. and San Segundo, B. (1994) Differential expression and induction of chitinases and β-1,3-glucanases in response to fungal infection during germination of maize seeds. Molecular Plant-Microbe Interactions 7, 2331.CrossRefGoogle Scholar
Darnetty, J.F.L., Muthukrishnan, S., Swegle, M., Vigers, A.J. and Selitrennikoff, C.P. (1993) Variability in antifungal proteins in the grains of maize, sorghum and wheat. Physiologia Plantarum 88, 339349.CrossRefGoogle Scholar
de Jong, A.J., Cordewener, J., Lo Schiavo, F., Terzi, M., Vandekerckhove, J., van Kammen, A. and de Vries, S.C. (1992) A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4, 425433.CrossRefGoogle ScholarPubMed
de Jong, A.J., Heidstra, R., Spaink, H.P., Hartog, M.V., Meijer, E.A., Hendriks, T., Lo Schiavo, F., Terzi, M., Bisseling, T., van Kammen, A. and de Vries, S.C. (1993) Rhizobium lipooligosaccharides rescue a carrot somatic embryo mutant. Plant Cell 5, 615620.CrossRefGoogle ScholarPubMed
de Jong, A.J., Hendriks, T., Meijer, E.A., Penning, M., Lo Schiavo, F., Terzi, M., van Kammen, A. and de Vries, S.C. (1995) Transient reduction in secreted 32 kD chitinase prevents somatic embryogenesis in the carrot (Daucus carota L.) variant ts 11. Developmental Genetics 16, 332343.CrossRefGoogle Scholar
Denarie, J. and Cullimore, J. (1993) Lipo-oligosaccharide nodulation factors: a new class of signalling molecules mediating recognition and morphogenesis. Cell 74, 951954.CrossRefGoogle ScholarPubMed
Diaz-Perales, A., Collada, C., Blanco, C., Sanchez-Monge, R., Carrillo, T., Aragoncillo, C. and Salcedo, G. (1998) Class I chitinases with hevein-like domain, but not class II enzymes, are relevant chestnut and avocado allergens. Journal of Allergy and Clinical Immunology 102, 127133.CrossRefGoogle Scholar
Diaz-Perales, A., Collada, C., Blanco, C., Sanchez-Monge, R., Carrillo, T., Aragoncillo, C. and Salcedo, G. (1999) Cross-reaction in the latex-fruit syndrome: A relevant role of chitinases but not of complex asparagine-linked glycans. Journal of Allergy and Clinical Immunology 104, 681687.CrossRefGoogle Scholar
Domon, J.M., Neutelings, G., Roger, D., David, A. and David, H. (2000) A basic chitinase-like protein secreted by embryogenic tissues of Pinus caribaea acts on arabinogalactan proteins extracted from the same cell lines. Journal of Plant Physiology 156, 3339.CrossRefGoogle Scholar
Dong, J.Z. and Dunstan, D.I. (1997) Endochitinase and β-1,3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201, 189194.CrossRefGoogle ScholarPubMed
Egertsdotter, U. and von Arnold, S. (1998) Development of somatic embryos in Norway spruce. Journal of Experimental Botany 49, 155162.CrossRefGoogle Scholar
Ergon, A., Klemsdal, S.S. and Tronsmo, A.M. (1998) Interactions between cold hardening and Microdochium nivale infection on expression of pathogenesis-related genes in winter wheat. Physiological and Molecular Plant Pathology 53, 301310.CrossRefGoogle Scholar
Flach, J., Pilet, P.E. and Jollés, P. (1992) What's new in chitinase research? Experientia 48, 701716.CrossRefGoogle ScholarPubMed
Fritig, B., Heitz, T. and Legrand, M. (1998) Antimicrobial proteins in induced plant defense. Current Opinion in Immunology 10, 1622.CrossRefGoogle ScholarPubMed
Fukamizo, T., Koga, D. and Goto, S. (1995) Comparative biochemistry of chitinases – anomeric form of the reaction products. Bioscience, Biotechnology and Biochemistry 59, 311313.CrossRefGoogle Scholar
Garcia-Casado, G., Collada, C., Allona, I., Casado, R., Pacios, L.F., Aragoncillo, C. and Gomez, L. (1998) Sitedirected mutagenesis of active site residues in a class I endochitinase from chestnut seeds. Glycobiology 8, 10211028.CrossRefGoogle Scholar
Garcia-Casado, G., Collada, C., Allona, I., Soto, A., Casado, R., Rodriguez-Cerezo, E., Gomez, L. and Aragoncillo, C. (2000) Characterization of an apoplastic basic thaumatin-like protein from recalcitrant chestnut seeds. Physiologia Plantarum 110, 172180.CrossRefGoogle Scholar
Garcia-Olmedo, F., Salcedo, G., Sanchez-Monge, R., Hernandez-Lucas, C., Carmona, M.J., Lopez-Fando, J.J., Fernandez, J.A., Gomez, L., Royo, J., Garcia-Maroto, F., Castagnaro, A. and Carbonero, P. (1992) Trypsin/α-amylase inhibitors and thionins: possible defence proteins from barley. pp. 335-350 in Shewry, P. (Ed.) Barley: Genetics, biochemistry, molecular biology and biotechnology. Wallingford, CAB International.Google Scholar
Gatschet, M.J., Taliaferro, C.M., Porter, D.R., Anderson, M.P., Anderson, J.A. and Jackson, K.W. (1996) A coldregulated protein from Bermudagrass crowns is a chitinase. Crop Science 36, 712718.CrossRefGoogle Scholar
Gijzen, M., Kuflu, K., Qutob, D. and Chernys, J.T. (2001) A class I chitinase from soybean seed coat. Journal of Experimental Botany 52, 22832289.CrossRefGoogle ScholarPubMed
Grison, R., Grezes-Besset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.J. and Toppan, A. (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing chimeric chitinase gene. Nature Biotechnology 14, 643646.CrossRefGoogle ScholarPubMed
Hahn, M., Hennig, M., Schlesier, B. and Höhne, W. (2000) Structure of jack bean chitinase. Acta Crystallographica 56, 10961099.Google ScholarPubMed
Hamel, F., Boivin, R., Tremblay, C. and Bellemare, G. (1997) Structural and evolutionary relationships among chitinases of flowering plants. Journal of Molecular Evolution 44, 614624.CrossRefGoogle ScholarPubMed
Hart, P.J., Monzingo, A.F., Ready, M.P., Ernst, S.R. and Robertus, J.D. (1993) Crystal structure of an endochitinase from Hordeum vulgare L. seeds. Journal of Molecular Biology 229, 189193.CrossRefGoogle ScholarPubMed
Hart, P.J., Pfluger, H.D., Monzingo, A.F., Hollis, T. and Robertus, J.D. (1995) The refined crystal structure of an endochitinase from Hordeum vulgare seeds at 1.8 Å resolution. Journal of Molecular Biology 248, 402413.CrossRefGoogle ScholarPubMed
Hejgaard, J., Jacobsen, S. and Svendsen, I. (1991) Two antifungal thaumatin-like proteins from barley grain. FEBS Letters 291, 127131.CrossRefGoogle ScholarPubMed
Helleboid, S., Hendriks, T., Bauw, G., Inze, D., Vasseur, J. and Hilbert, J.L. (2000) Three major somatic embryogenesis related proteins in Cichorium identified as PR proteins. Journal of Experimental Botany 51, 11891200.CrossRefGoogle ScholarPubMed
Henrissat, B. (1999) Classification of chitinase modules. pp. 137169in Jollés, P.; Muzzarelli, R.A.A. (Eds) Chitin and chitinases. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Henrissat, B. and Bairoch, A. (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal 293, 781788.CrossRefGoogle ScholarPubMed
Hiilovaara-Teijo, M., Hannukkala, A., Griffith, M., Yu, X.M. and Pihakaski-Maunsbach, K. (1999) Snow-moldinduced apoplastic proteins in winter rye leaves lack antifreeze activity. Plant Physiology 121, 665673.CrossRefGoogle ScholarPubMed
Hollis, T., Honda, Y., Fukamizo, T., Marcotte, E., Day, P.J. and Robertus, J.D. (1997) Kinetic analysis of barley chitinase. Archives of Biochemistry and Biophysics 344, 335342.CrossRefGoogle ScholarPubMed
Hollis, T., Monzingo, A. F., Bortone, K., Ernst, S., Cox, R. and Robertus, J. D. (2000) The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis. Protein Science 9, 544551.CrossRefGoogle ScholarPubMed
Hölm, L. and Sander, C. (1994) Structural similarity of plant chitinase and lysozymes from animal and phage. An evolutionary connection. FEBS Letters 340, 129132.CrossRefGoogle ScholarPubMed
Hon, W.C., Griffith, M., Mlynarz, A., Kwok, Y.C. and Yang, D.S.C. (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiology 109, 879889.CrossRefGoogle ScholarPubMed
Huynh, Q.K., Hironaka, C.M., Levine, E.B., Smith, C.E., Borgmeyer, J.R. and Shah, D.M. (1992) Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. Journal of Biological Chemistry 267, 66356640.CrossRefGoogle ScholarPubMed
Ignatius, S.M.J., Huang, J.K., Chopra, R.K. and Muthukrishnan, S. (1994) Isolation and characterization of a barley chitinase genomic clone. Expression in powdery mildew infected barley. Journal of Plant Biochemistry and Biotechnology 3, 9195.CrossRefGoogle Scholar
Iseli, B., Boller, T. and Neuhaus, J.M. (1993) The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin-binding but not for catalytic or antifungal activity. Plant Physiology 103, 221226.CrossRefGoogle ScholarPubMed
Iseli, B., Armand, S., Boller, T., Neuhaus, J.M. and Henrissat, B. (1996) Plant chitinases use two different hydrolytic mechanisms. FEBS Letters 382, 186188.CrossRefGoogle ScholarPubMed
Iseli-Gamboni, B., Boller, T. and Neuhaus, J.M. (1998) Mutation of either of two essential glutamates converts the catalytic domain of tobacco class I chitinase into a chitin-binding lectin. Plant Science 134, 4551.CrossRefGoogle Scholar
Jach, G., Gornhardt, B., Mundy, J., Logemann, J., Pinsdorf, P., Leah, R., Schell, J. and Maas, C. (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant Journal 8, 97109.CrossRefGoogle ScholarPubMed
Jensen, L.G. (1994) Developmental patterns of enzymes and proteins during mobilization of endosperm stores in germinating barley grains. Hereditas 121, 5372.CrossRefGoogle Scholar
Ji, C., Norton, R.A., Wicklow, D.T. and Dowd, P.F. (2000) Isoform patterns of chitinase and β-1,3-glucanase in maturing corn kernels (Zea mays L.) associated with Aspergillus flavus milk stage infection. Journal of Agricultural and Food Chemistry 48, 507511.CrossRefGoogle ScholarPubMed
Jollés, P. and Muzzarelli, R.A.A. (1999) Chitin and chitinases. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Kombrink, E. and Somssich, I.E. (1995) Defense responses of plants to pathogens. Advances in Botanical Research 21, 134.CrossRefGoogle Scholar
Koshland, D.E. (1953) Stereochemistry and mechanism of enzymatic reactions. Biology Reviews 28, 416436.CrossRefGoogle Scholar
Kragh, K.M., Jacobsen, S., Mikkelsen, J.D. and Nielsen, K.A. (1991) Purification and characterization of three chitinases and one β-1,3-glucanase accumulating in the medium of cell suspension cultures of barley (Hordeum vulgare L.). Plant Science 76, 6577.CrossRefGoogle Scholar
Kragh, K.M., Jacobsen, S., Mikkelsen, J.D. and Nielsen, K.A. (1993) Tissue specificity and induction of class I, II and III chitinases in barley (Hordeum vulgare). Physiologia Plantarum 89, 490498.CrossRefGoogle Scholar
Kragh, K.M., Hendriks, T., de Jong, A.J., Lo Schiavo, F., Bucherna, N., Højrup, P., Mikkelsen, J.D. and de Vries, S.C. (1996) Characterization of chitinases able to rescue somatic embryos of the temperature-sensitive carrot variant ts11. Plant Molecular Biology 31, 631645.CrossRefGoogle Scholar
Krishnaveni, S., Liang, G.H., Muthukrishnan, S. and Manickam, A. (1999) Purification and partial characterization of chitinases from sorghum seeds. Plant Science 144, 17.CrossRefGoogle Scholar
Leah, R., Tommerup, H., Svendsen, I. and Mundy, J. (1991) Biochemical and molecular characterization of three barley seed proteins with antifungal properties. Journal of Biological Chemistry 266, 15641573.CrossRefGoogle ScholarPubMed
Leah, R., Skriver, K., Knudsen, S., Ruud-Hansen, J., Raikhel, N.V. and Mundy, J. (1994) Identification of an enhancer/silencer sequence directing the aleuronespecific expression of a barley chitinase gene. Plant Journal 6, 579589.CrossRefGoogle ScholarPubMed
Majeau, N., Trudel, J. and Asselin, A. (1990) Diversity of cucumber chitinase isoforms and characterization of one seed basic chitinase with lysozyme activity. Plant Science 68, 916.CrossRefGoogle Scholar
Mauch, F., Mauch-Mani, B. and Boller, T. (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiology 88, 936942.CrossRefGoogle ScholarPubMed
Mikkola, J.H., Alenius, H., Kalkkinen, N., Turjanmaa, K., Palosuo, T. and Reunala, T. (1998) Hevein-like protein domains as a possible cause for allergen cross-reactivity between latex and banana. Journal of Allergy and Clinical Immunology 102, 10051012.CrossRefGoogle ScholarPubMed
Molano, J., Polacheck, I., Duran, A. and Cabib, E. (1979) Endochitinase from wheat germ. Activity on nascent and preformed chitin. Journal of Biological Chemistry 254, 49014907.CrossRefGoogle ScholarPubMed
Nakazaki, T., Tomimoto, Y., Ikehashi, H., Kowyama, Y., Yano, M., Yamamoto, K. and Sasaki, T. (1997) A novel chitinase in rice (Oryza sativa L.) detected from husk proteins and its gene locus. Breeding Science 47, 363369.Google Scholar
Neale, A.D., Wahleithner, J.A., Lund, M., Bonnett, H.T., Kelly, A., Meeks-Wagner, D.R., Peacock, W.J. and Dennis, E.S. (1990) Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2, 673684.Google ScholarPubMed
Neuhaus, J.M. (1999) Plant chitinases (PR-3, PR-4, PR-8, PR-11). pp. 77105in Datta, S.K.; Muthukrishnan, S. (Eds) Pathogenesis-related proteins in plants. Boca Raton, FL, CRC Press.Google Scholar
Neuhaus, J.M., Sticher, L., Meins, F. and Boller, T. (1991) A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proceedings of the National Academy of Sciences, USA 88, 1036210366.CrossRefGoogle Scholar
Neuhaus, J.M., Pietrzak, M. and Boller, T. (1994) Mutation analysis of the C-terminal vacuolar targeting peptide of tobacco chitinase: low specificity of the sorting system, and gradual transition between intracellular retention and secretion into extracellular space. Plant Journal 5, 4554.CrossRefGoogle ScholarPubMed
Neuhaus, J.M., Fritig, B., Linthorst, H.J.M., Meins, F., Mikkelsen, J.D. and Ryals, J. (1996) A revised nomenclature for chitinase genes. Plant Molecular Biology Reporter 14, 102104.CrossRefGoogle Scholar
Ohnuma, T., Yagi, M., Yamagami, T., Taira, T., Aso, Y. and Ishiguro, M. (2002) Molecular cloning, functional expression, and mutagenesis of cDNA encoding rye (Secale cereale) seed chitinase-c. Bioscience, Biotechnology and Biochemistry 66, 277284.CrossRefGoogle ScholarPubMed
Ovtsyna, A.O., Schultze, M., Tikhonovich, I.A., Spaink, H.P., Kondorosi, E., Kondorosi, A. and Staehelin, C. (2000) Nod factors of Rhizobium leguminosarum bv. viciae and their fucosylated derivatives stimulate a Nod factor cleaving activity in pea roots and are hydrolyzed in vitro by plant chitinases at different rates. Molecular Plant-Microbe Interactions 13, 799807.CrossRefGoogle ScholarPubMed
Papanikolau, Y., Prag, G., Tavlas, G., Vorgias, C.E., Oppenheim, A.B. and Petratos, K. (2001) High resolution structural analyses of mutant chitinase A complexes with substrates provide new insight into the mechanism of catalysis. Biochemistry 40, 1133811343.CrossRefGoogle ScholarPubMed
Patil, V.R. and Widholm, J.M. (1987) Possible correlation between increased vigour and chitinase activity expression in tobacco. Journal of Experimental Botany 48, 19431950.CrossRefGoogle Scholar
Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A.B., Chet, I., Wilson, K.S. and Vorgias, C.E. (1994) Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2, 11691180.CrossRefGoogle ScholarPubMed
Petruzzelli, L., Kunz, C., Waldvogel, R., Meins, F. and Leubner-Metzger, G. (1999) Distinct ethylene and tissue-specific regulation of β-1,3-glucanases and chitinases during pea seed germination. Planta 209, 195201.CrossRefGoogle ScholarPubMed
Raikhel, N.V., Lee, H.I. and Broekaert, W.F. (1993) Structure and function of chitin-binding proteins. Annual Review of Plant Physiology and Plant Molecular Biology 44, 591615.CrossRefGoogle Scholar
Roberts, W.K. and Selitrennikoff, C.P. (1988) Plant and bacterial chitinases differ in antifungal activity. Journal of General Microbiology 134, 169176.Google Scholar
Robertus, J.D. and Monzingo, A.F. (1999) The structure and action of chitinases. pp. 125135in Jollés, P.; Muzzarelli, R.A.A. (Eds) Chitin and chitinases. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Rodriguez-Herrera, R., Waniska, R.D. and Rooney, W.L. (1999) Antifungal proteins and grain mold resistance in sorghum with nonpigmented testa. Journal of Agricultural and Food Chemistry 47, 48024806.CrossRefGoogle ScholarPubMed
Roger, D., Gallusci, P., Meyer, Y., David, A. and David, H. (1998) Basic chitinases are correlated with the morphogenic response of flax cells. Physiologia Plantarum 103, 271279.CrossRefGoogle Scholar
Rohrig, H., Schmidt, J., Walden, R., Czaja, I., Miklasevics, E., Wieneke, U., Schell, J. and John, M. (1995) Growth of tobacco protoplasts stimulated by synthetic lipochitooligosaccharides. Science 269, 841843.CrossRefGoogle ScholarPubMed
Sahai, A.S. and Manocha, M.S. (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiological Reviews 11, 317338.CrossRefGoogle Scholar
Salcedo, G., Diaz-Perales, A. and Sanchez-Monge, R. (2001) The role of plant panallergens in sensitization to natural rubber latex. Current Opinion in Allergy and Clinical Immunology 1, 177183.CrossRefGoogle ScholarPubMed
Sanchez-Monge, R., Blanco, C., Diaz-Perales, A., Collada, C., Carrillo, T., Aragoncillo, C. and Salcedo, G. (1999) Isolation and characterization of major banana allergens: identification as fruit class I chitinases. Clinical and Experimental Allergy 29, 673680.CrossRefGoogle ScholarPubMed
Sanchez-Monge, R., Blanco, C., Diaz-Perales, A., Collada, C., Carrillo, T., Aragoncillo, C. and Salcedo, G. (2000) Class I chitinases, the panallergens responsible for the latex-fruit syndrome, are induced by ethylene treatment and inactivated by heating. Journal of Allergy and Clinical Immunology 106, 190195.CrossRefGoogle Scholar
Schlumbaum, A., Mauch, F., Vögeli, U. and Boller, T. (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324, 365367.CrossRefGoogle Scholar
Schultze, M., Staehelin, C., Brunner, F., Genetet, I., Legrand, M., Fritig, B., Kondorosi, E. and Kondorosi, A. (1998) Plant chitinase/lysozyme isoforms show distinct substrate speci.city and cleavage site preference towards lipochitooligosaccharide Nod signals. Plant Journal 16, 571580.CrossRefGoogle Scholar
Seetharaman, K., Waniska, R.D. and Rooney, L.W. (1996) Physiological changes in sorghum antifungal proteins. Journal of Agricultural and Food Chemistry 44, 24352441.CrossRefGoogle Scholar
Shih, C., Khan, A.A., Jia, S., Wu, J. and Shih, D.S. (2001) Purification, characterization, and molecular cloning of a chitinase from the seeds of Benincasa hispida. Bioscience, Biotechnology and Biochemistry 65, 501509.CrossRefGoogle ScholarPubMed
Shinshi, H., Neuhaus, J.M., Ryals, J. and Meins, F. (1990) Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Plant Molecular Biology 14, 357368.CrossRefGoogle ScholarPubMed
Sinnot, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer. Chemical Reviews 90, 11701202.Google Scholar
Song, H.K. and Suh, S.W. (1996) Refined structure of the chitinase from barley seeds at 2.0 Å resolution. Acta Crystallographica D52, 289298.Google Scholar
Sowka, S., Hsieh, L.S., Krebitz, M., Akasawa, A., Martin, B.M., Starrett, D., Peterbauer, C.K., Scheiner, O. and Breiteneder, H. (1998) Identification and cloning of Prs a 1, a 32-kDa endochitinase and major allergen of avocado, and its expression in the yeast Pichia pastoris. Journal of Biological Chemistry 273, 2809128097.CrossRefGoogle ScholarPubMed
Staehelin, C., Granado, J., Müller, J., Wiemken, A., Mellor, R.B., Felix, G., Regenass, M., Broughton, W.J. and Boller, T. (1994) Perception of Rhizobium nodulation factors by tomato cells and inactivation by root chitinases. Proceedings of the National Academy of Sciences, USA 91, 21962200.CrossRefGoogle ScholarPubMed
Stintzi, A., Heitz, T., Prasad, V., Wiedemann-Merdinoglu, S., Kauffmann, S., Geoffroy, P., Legrand, M. and Fritig, B. (1993) Plant ‘pathogenesis-related’ proteins and their role in defense against pathogens. Biochimie 75, 687706.CrossRefGoogle ScholarPubMed
Strynadka, N.C.J. and James, M.N.G. (1996) Lysozyme: a model enzyme in protein crystallography. pp. 185222in Jollés, P. (Ed.) Lysozymes: Model enzymes in biochemistry and biology. Basel, Switzerland, Birkhäuser Verlag.CrossRefGoogle Scholar
Suarez, V., Staehelin, C., Arango, R., Holtorf, H., Hofsteenge, J. and Meins, F. (2001) Substrate specificity and antifungal activity of recombinant tobacco class I chitinases. Plant Molecular Biology 45, 609618.CrossRefGoogle ScholarPubMed
Swegle, M., Huang, J.K., Lee, G. and Muthukrishnan, S. (1989) Identification of an endochitinase cDNA clone from barley aleurone cells. Plant Molecular Biology 12, 403412.CrossRefGoogle ScholarPubMed
Swegle, M., Kramer, K.J. and Muthukrishnan, S. (1992) Properties of barley seed chitinases and release of embryo-associated isoforms during early stages of imbibition. Plant Physiology 99, 10091014.CrossRefGoogle ScholarPubMed
Taira, T., Yamagami, T., Aso, Y., Ishiguro, M. and Ishihara, M. (2001) Localization, accumulation, and antifungal activity of chitinases in rye (Secale cereale) seed. Bioscience, Biotechnology and Biochemistry 65, 27102718.CrossRefGoogle ScholarPubMed
Takakura, Y., Ito, T., Saito, H., Inoue, T., Komari, T. and Kuwata, S. (2000) Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Molecular Biology 42, 883897.CrossRefGoogle ScholarPubMed
Tews, I., Perrakis, A., Oppenheim, A., Dauter, Z., Wilson, K.S. and Vorgias, C.E. (1996) Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease. Nature Structural Biology 3, 638648.CrossRefGoogle ScholarPubMed
Tews, I., van Scheltinga, A.C.T., Perrakis, A., Wilson, K.S. and Dijkstra, B.W. (1997) Substrate-assisted catalysis unifies two families of chitinolytic enzymes. Journal of the American Chemical Society 119, 79547959.CrossRefGoogle Scholar
Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalities and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
van Hengel, A.J., Guzzo, F., van Kammen, A. and de Vries, S.C. (1998) Expression pattern of the carrot EP3 endochitinase genes in suspension cultures and in developing seeds. Plant Physiology 117, 4353.CrossRefGoogle Scholar
van Hengel, A.J., Tadesse, Z., Immerzeel, P., Schols, H., van Kammen, A. and de Vries, S.C. (2001) Nacetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiology 125, 18801890.CrossRefGoogle ScholarPubMed
van Parijs, J., Broekaert, W.F., Goldstein, I.J. and Peumans, W.J. (1991) Hevein: an antifungal protein from rubbertree (Hevea brasiliensis) latex. Planta 183, 258264.CrossRefGoogle ScholarPubMed
van Scheltinga, A.C.T., Armand, S., Kalk, K.H., Isogai, A., Henrissat, B. and Dijkstra, B.W. (1995) Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34, 1561915623.CrossRefGoogle Scholar
van Scheltinga, A.C.T., Hennig, M. and Dijkstra, B.W. (1996) The 1.8 Å resolution structure of hevamine, a plant chitinase/lysozyme and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18. Journal of Molecular Biology 262, 243257.CrossRefGoogle Scholar
Verburg, J.G., Smith, C.E., Lisek, C.A. and Huynh, Q.K. (1992) Identification of an essential tyrosine residue in the catalytic site of a chitinase isolated from Zea mays that is selectively modified during inactivation with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Journal of Biological Chemistry 267, 38863893.CrossRefGoogle ScholarPubMed
Verburg, J.G., Rangwala, S.H., Samac, D.A., Luckow, V.A. and Huynh, Q.K. (1993) Examination of the role of tyrosine-174 in the catalytic mechanism of the Arabidopsis thaliana chitinase: comparison of variant chitinases generated by site-directed mutagenesis and expressed in insect cells using baculovirus vectors. Archives of Biochemistry and Biophysics 300, 223230.CrossRefGoogle ScholarPubMed
Vierheilig, H., Alt, M., Neuhaus, J.M., Boller, T. and Wiemken, A. (1993) Colonization of transgenic Nicotiana sylvestris plants expressing different forms of Nicotiana tabacum chitinase by the root pathogen Rhizoctonia solani and by the mycorrhizal symbiont Glomus mossae. Molecular Plant-Microbe Interactions 6, 261264.CrossRefGoogle Scholar
Vocadlo, D.J., Davies, G.J., Laine, R. and Withers, S.G. (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature 412, 835838.CrossRefGoogle Scholar
Wadsworth, S.A. and Zikakis, J.P. (1984) Chitinase from soybean seeds: purification and some properties of the enzyme system. Journal of Agricultural and Food Chemistry 32, 12841288.CrossRefGoogle Scholar
Watanabe, T., Kobori, K., Miyashita, K., Fujii, T., Sakai, H., Uchida, M. and Tanaka, H. (1993) Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. Journal of Biological Chemistry 268, 1856718572.CrossRefGoogle ScholarPubMed
Wu, S.C., Kriz, A.L. and Widholm, J.M. (1994) Molecular analysis of two cDNA clones encoding acidic class I chitinase in maize. Plant Physiology 105, 10971105.CrossRefGoogle ScholarPubMed
Wu, C.T., Leubner-Metzger, G., Meins, F. and Bradford, K.J. (2001) Class I β-1,3-glucanase and chitinase are expressed in the micropylar endosperm of tomato seeds prior to radicle emergence. Plant Physiology 126, 12991313.CrossRefGoogle Scholar
Yamagami, T. and Funatsu, G. (1993a) Purification and some properties of three chitinases from the seeds of rye (Secale cereale). Bioscience, Biotechnology and Biochemistry 57, 643647.CrossRefGoogle ScholarPubMed
Yamagami, T. and Funatsu, G. (1993b) The complete amino acid sequence of chitinase-c from the seeds of rye (Secale cereale). Bioscience, Biotechnology and Biochemistry 57, 18541861.CrossRefGoogle Scholar
Yamagami, T. and Funatsu, G. (1994) The complete amino acid sequence of chitinase-a from the seeds of rye (Secale cereale). Bioscience, Biotechnology and Biochemistry 58, 322329.CrossRefGoogle Scholar
Yeboah, N.A., Arahira, M., Nong, V.H., Zhang, D., Kadokura, K., Watanabe, A. and Fukazawa, C. (1998) A class III acidic endochitinase is specifically expressed in the developing seeds of soybean (Glycine max [L.] Merr.). Plant Molecular Biology 36, 407415.CrossRefGoogle Scholar
Yeh, S., Moffatt, B.A., Griffith, M., Xiong, F., Yang, D.S.C., Wiseman, S.B., Sarhan, F., Danyluk, J., Xue, Y.Q., Hew, C.L., Doherty-Kirby, A. and Lajoie, G. (2000) Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiology 124, 12511263.CrossRefGoogle ScholarPubMed
Yun, D.J., Bressan, R.A. and Hasegawa, P.M. (1997) Plant antifungal proteins. Plant Breeding Reviews 14, 3988.Google Scholar
Zhu, B., Chen, T.H.H. and Li, P.H. (1993) Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Molecular Biology 21, 729735.CrossRefGoogle ScholarPubMed
Zhu, Q., Maher, E.A., Masoud, S., Dixon, R.A. and Lamb, C.J. (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio-Technology 12, 807812.Google Scholar