Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T15:10:35.674Z Has data issue: false hasContentIssue false

Quantifying seed germination based on thermal models to predict global climate change impacts on Cerrado species

Published online by Cambridge University Press:  02 July 2021

Amanda Ribeiro Correa*
Affiliation:
Programa de Pós-graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, n° 2367, Boa Esperança, 78060-900Cuiabá, MT, Brazil
Ana Mayra Pereira da Silva
Affiliation:
Programa de Pós-graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, n° 2367, Boa Esperança, 78060-900Cuiabá, MT, Brazil
Carita Rodrigues de Aquino Arantes
Affiliation:
Programa de Pós-graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, n° 2367, Boa Esperança, 78060-900Cuiabá, MT, Brazil
Sebastião Carneiro Guimarães
Affiliation:
Programa de Pós-graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, n° 2367, Boa Esperança, 78060-900Cuiabá, MT, Brazil Departamento de Fitotecnia e Fitossanidade, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, n° 2367, Boa Esperança, 78060-900Cuiabá, MT, Brazil
Elisangela Clarete Camili
Affiliation:
Programa de Pós-graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, n° 2367, Boa Esperança, 78060-900Cuiabá, MT, Brazil Departamento de Fitotecnia e Fitossanidade, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, n° 2367, Boa Esperança, 78060-900Cuiabá, MT, Brazil
Maria de Fátima Barbosa Coelho
Affiliation:
Programa de Pós-graduação em Agricultura Tropical, Universidade Federal de Mato Grosso (UFMT), Avenida Fernando Correa da Costa, n° 2367, Boa Esperança, 78060-900Cuiabá, MT, Brazil
*
Author for Correspondence: Amanda Ribeiro Correa, E-mail: [email protected]

Abstract

Seed germination is regulated by temperature and can thus be quantified by thermal models, which can predict germination occurrence in biomes and plant survival under possible climate change scenarios. The objective of this study was to quantify germination based on thermal time and survival risk of 14 species in the Brazilian Cerrado in scenarios of future climate change. Seeds were collected in the warmer regions of the Cerrado, central Brazil, placed in incubators to germinate at constant temperatures of 10–50°C and evaluated every hour or day. Germination rate (R50), time for germination of 50% of the seeds (T50) and dent-like function were used to determine cardinal temperatures. Thermal time parameters were estimated using the Weibull model. Seed germination forecasts were made based on the International Panel on Climatic Change (IPCC) scenarios of global temperature increase. Base temperatures (Tb) ranged from 3.5 to 16.5°C, maximum temperatures (Tmax) from 35 to 50°C and optimum temperatures (To) from 30 to 35°C. Estimated thermal time varied from 484°C h to 400°C d at sub-optimal temperatures and 108°C h at 126°C d at supra-optimal temperatures. Species more distributed showed a higher thermal range of germination and are less susceptible to extinction in temperature increase scenarios. The results of this study suggest that seeds that are non-dormant after dispersal may be the most vulnerable in the future. In this context, our predictions contribute to understand how the survival of trees and shrubs will be affected in the Cerrado in the future.

Type
Research Paper
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarado, V and Bradford, KJ (2002) A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment 25, 10611069.CrossRefGoogle Scholar
Arruda, DM, Fernandes-Filho, EI, Solar, RR and Schaefer, CE (2017) Combining climatic and soil properties better predicts covers of Brazilian biomes. The Science of Nature 104, 32.CrossRefGoogle ScholarPubMed
Baskin, CC and Baskin, JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination (2nd edn). San Diego, CA, USA, Academic Press.Google Scholar
Bewley, JD, Bradford, K, Hilhorst, H and Nonogaki, H (2013) Seeds: physiology of development, germination and dormancy (3rd edn). New York, NY, USA, Springer Science.CrossRefGoogle Scholar
Bradford, KJ (2002) Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science 50, 248260.CrossRefGoogle Scholar
Brasil, (2009) Regras para análise de sementes / Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária, Mapa/ACS.Google Scholar
Cardoso, VJM and Pereira, FJM (2009) Dependência térmica da germinação de sementes de Drymaria cordata (L.) Willd. ex Roem. & Schult.(Cariophyllaceae). Acta Botanica Brasilica 23, 305312.CrossRefGoogle Scholar
Cochrane, A, Hoyle, GL, Yates, CJ, Wood, J and Nicotra, AB (2014) Predicting the impact of increasing temperatures on seed germination among populations of Western Australian Banksia (Proteaceae). Seed Science Research 24, 195205.CrossRefGoogle Scholar
Colli, GR, Vieira, CR and Dianese, JC (2020) Biodiversity and conservation of the Cerrado: recent advances and old challenges. Biodiversity and Conservation 29, 14651475.CrossRefGoogle Scholar
Correa, AR, Silva, AMPD, Silva, VSMD, Camili, EC, Silva, ARBD and Coelho, MdFB (2020) Germination and seed ecology of Buchenavia tomentosa Eichler (Combretaceae). Journal of Seed Science 42, e202042007.CrossRefGoogle Scholar
Dahal, P and Bradford, KJ (1994) Hydrothermal time analysis of tomato seed germination at suboptimal temperature and reduced water potential. Seed Science Research 4, 7180.CrossRefGoogle Scholar
Daibes, LF and Cardoso, VJ (2018) Seed germination of a South American forest tree described by linear thermal time models. Journal of Thermal Biology 76, 156164.CrossRefGoogle ScholarPubMed
Daibes, LF, Amoêdo, SC, Moraes, JN, Fenelon, N, Silva, DRD, Vargas, LA and Frigeri, RB (2019) Thermal requirements of seed germination of ten tree species occurring in the western Brazilian Amazon. Seed Science Research 29, 115123.CrossRefGoogle Scholar
Dayrell, RLC, Gonçalves-Alvim, S, Negreiros, D, Fernandes, GW and Silveira, FAO (2015) Environmental control of seed dormancy and germination of Mimosa calodendron (Fabaceae): implications for ecological restoration of a highly threatened environment. Brazilian Journal of Botany 38, 395399.CrossRefGoogle Scholar
Derakhshan, A, Bakhshandeh, A, Siadat, SAA, Moradi-Telavat, MR and Andarzian, SB (2018) Quantifying the germination response of spring canola (Brassica napus L.) to temperature. Industrial Crops and Products 122, 195201.CrossRefGoogle Scholar
Donohue, K, Casas, RRD, Burghardt, L, Kovach, K and Willis, CG (2010) Germination, post germination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics 41, 293319.CrossRefGoogle Scholar
Dürr, C, Dickie, JB, Yang, XY and Pritchard, HW (2015) Ranges of critical temperature and water potential values for the germination of species worldwide: contribution to a seed trait database. Agricultural and Forest Meteorology 200, 222232.CrossRefGoogle Scholar
Escobar, EDF and Cardoso, VJ (2015) Longevity of seeds and soil seed bank of the Cerrado tree Miconia chartacea (Melastomataceae). Seed Science Research 25, 386394.CrossRefGoogle Scholar
Escobar, EDF, Silveira, FAO and Morellato, LPC (2018) Timing of seed dispersal and seed dormancy in Brazilian savanna: two solutions to face seasonality. Annals of Botany 121, 11971209.CrossRefGoogle ScholarPubMed
Field, R, O'brien, EM and Whittaker, RJ (2005) Global models for predicting woody plant richness from climate: development and evaluation. Ecology 86, 22632277.CrossRefGoogle Scholar
Flora do Brasil (2020) Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/ (accessed 1 May 2020).Google Scholar
Furley, PA (1999) The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecology and Biogeography 8, 223241.Google Scholar
Gomes, SEV, Oliveira, GMD, Araujo, MND, Seal, CE and Dantas, BF (2019) Influence of current and future climate on the seed germination of Cenostigma microphyllum (Mart. ex G. Don) E. Gagnon & GP Lewis. Folia Geobotanica 54, 1928.CrossRefGoogle Scholar
Grubb, PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Reviews 52, 107145.CrossRefGoogle Scholar
Hawkins, BA, Field, R, Cornell, HV, Currie, DJ, Guégan, JF, Kaufman, DM and Porter, EE (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 31053117.CrossRefGoogle Scholar
INMET – Instituto Nacional de Meteorologia (2000–2020). Dados Históricos. Available at: https://bdmep.inmet.gov.br/ (accessed 22 August 2020).Google Scholar
IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (Core Writing Team, Pachauri RK and Meyer LA (Eds)]. IPCC, Geneva, Switzerland, 151 pp.Google Scholar
Kamkar, B, Al-Alahmadi, MJ, Mahdavi-Damghani, A and Villalobos, FJ (2012) Quantification of the cardinal temperatures and thermal time requirement of opium poppy (Papaver somniferum L.) seeds to germinate using non-linear regression models. Industrial Crops and Products 35, 192198.CrossRefGoogle Scholar
Marengo, JA, Jones, R, Alves, LM and Valverde, MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. International Journal of Climatology 29, 22412255.CrossRefGoogle Scholar
Marques, AR, Atman, AP, Silveira, FA and Lemos-Filho, JPD (2014) Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation. Plant Ecology 215, 517529.CrossRefGoogle Scholar
Mattana, E, Sacande, M, Bradamante, G, Gomez-Barreiro, P, Sanogo, S and Ulian, T (2018) Understanding biological and ecological factors affecting seed germination of the multipurpose tree Anogeissus leiocarpa. Plant Biology 20, 602609.CrossRefGoogle ScholarPubMed
Oliveira, GMD, Silva, FFSD, Araujo, MDN, Costa, DCCD, Gomes, SEV, Matias, JR and Dantas, BF (2019a) Environmental stress, future climate, and germination of Myracrodruon urundeuva seeds. Journal of Seed Science 41, 3243.CrossRefGoogle Scholar
Oliveira, HR, Staggemeier, VG, Faria, JEQ, de Oliveira, G and Diniz-Filho, JAF (2019b) Geographical ecology and conservation of Eugenia L. (Myrtaceae) in the Brazilian Cerrado: past, present and future. Austral Ecology 44, 95104.CrossRefGoogle Scholar
Parmoon, G, Moosavi, SA, Akbari, H and Ebadi, A (2015) Quantifying cardinal temperatures and thermal time required for germination of Silybum marianum seed. The Crop Journal 3, 145151.CrossRefGoogle Scholar
Probert, RJ (2000) The role of temperature in the regulation of seed dormancy and germination. pp. 261292 in Fenner, M (Ed.), Seeds: the ecology of regeneration in plant Communities (2nd edn). Wallingford, UK, CAB International.CrossRefGoogle Scholar
Reys, P, Camargo, MGG, Grombone-Guaratini, MT, Teixeira, AP, Assis, MA and Morellato, LPC (2013) Estrutura e composição florística de um Cerrado sensu stricto e sua importância para propostas de restauração ecológica. Hoehnea 40, 449464.CrossRefGoogle Scholar
Rodrigues-Junior, AG, Baskin, CC, Baskin, JM and Garcia, QS (2018) Sensitivity cycling in physically dormant seeds of the Neotropical tree Senna multijuga (Fabaceae). Plant Biology 20, 698706.CrossRefGoogle Scholar
Salazar, A, Goldstein, G, Franco, AC and Miralles-Wilhelm, F (2011) Timing of seed dispersal and dormancy, rather than persistent soil seed-banks, control seedling recruitment of woody plants in Neotropical savannas. Seed Science Research 21, 103.CrossRefGoogle Scholar
Soltani, E, Galeshi, S, Kamkar, B and Akramghaderi, F (2008) Modeling seed aging effects on response of germination to temperature in wheat. Seed Science and Biotechnology 2, 3236.Google Scholar
Soltani, E, Baskin, CC, Baskin, JM, Soltani, A, Galeshi, S, Ghaderi-Far, F and Zeinali, E (2016) A quantitative analysis of seed dormancy and germination in the winter annual weed Sinapis arvensis (Brassicaceae). Botany 94, 289300.CrossRefGoogle Scholar
Strassburg, BB, Brooks, T, Feltran-Barbieri, R, Iribarrem, A, Crouzeilles, R, Loyola, R and Balmford, A (2017) Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution 1, 13.CrossRefGoogle ScholarPubMed
Velazco, SJE, Villalobos, F, Galvão, F and de Marco-Júnior, P (2019) A dark scenario for Cerrado plant species: effects of future climate, land use and protected areas ineffectiveness. Diversity and Distributions 25, 660673.CrossRefGoogle Scholar
Supplementary material: File

Correa et al. supplementary material

Figure S2
Download Correa et al. supplementary material(File)
File 233.1 KB
Supplementary material: File

Correa et al. supplementary material

Figure S3
Download Correa et al. supplementary material(File)
File 638.1 KB
Supplementary material: File

Correa et al. supplementary material

Table S4
Download Correa et al. supplementary material(File)
File 16.7 KB