Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T17:31:52.089Z Has data issue: false hasContentIssue false

Phosphorylated 11S globulins in sunflower seeds

Published online by Cambridge University Press:  12 June 2013

Ivana Quiroga
Affiliation:
Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
Mariana Regente
Affiliation:
Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
Luciana Pagnussat
Affiliation:
Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
Ana Maldonado
Affiliation:
Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
Jesús Jorrín
Affiliation:
Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
Laura de la Canal*
Affiliation:
Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
*
*Correspondence E-mail: [email protected]

Abstract

Helianthinins are storage proteins present in Helianthus annuus seeds, belonging to the 11S globulin family. Here we describe that a fraction of the helianthinins is phosphorylated. This conclusion is supported by different criteria, including identification by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry of major protein bands revealed with a specific dye for phosphoproteins, anti-phosphoserine antibody and binding to a phosphoprotein affinity matrix. Moreover, we show that the phosphorylation status of helianthinins changes following germination.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, G.K. and Thelen, J.J. (2006) Large-scale identification and quantitative profiling of phosphoproteins expressed during seed filling in oilseed rape. Molecular and Cellular Proteomics 5, 20442059.CrossRefGoogle ScholarPubMed
Blom, N., Gammeltoft, S. and Brunak, S. (1999) Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. Journal of Molecular Biology 294, 13511362.CrossRefGoogle ScholarPubMed
Chitteti, B.R. and Peng, Z. (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. Journal of Proteome Research 6, 17181727.CrossRefGoogle ScholarPubMed
Fujii, H. and Zhu, J.-K. (2009) Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences, USA 106, 83808385.Google ScholarPubMed
Ghelis, T., Bolbach, G., Clodic, G., Habricot, Y., Miginiac, E., Sotta, B. and Jeannette, E. (2008) Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiology 148, 16681680.CrossRefGoogle ScholarPubMed
Kline-Jonakin, K.G., Barrett-Wilt, G.A. and Sussman, M.R. (2011) Quantitative plant phosphoproteomics. Current Opinion in Plant Biology 14, 507511.CrossRefGoogle ScholarPubMed
Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Laugesen, S., Messinese, E., Hem, S., Pichereaux, C., Grat, S., Ranjeva, R., Rossignol, M. and Bono, J.J. (2006) Phosphoproteins analysis in plants: a proteomic approach. Phytochemistry 67, 22082214.CrossRefGoogle ScholarPubMed
Martin, M., Espinosa Vidal, E. and de la Canal, L. (2007) Expression of a lipid transfer protein in Escherichia coli and its phosphorylation by a membrane-bound calcium-dependent protein kinase. Protein and Peptide Letters 14, 793799.Google ScholarPubMed
Meimoun, P., Ambard-Bretteville, F., Colas-des Francs-Small, C., Valot, B. and Vidal, J. (2007) Analysis of plant phosphoproteins. Analytical Biochemistry 371, 238246.CrossRefGoogle ScholarPubMed
Meyer, L.J., Gao, J., Xu, D. and Thelen, J.J. (2012) Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiology 159, 517528.CrossRefGoogle ScholarPubMed
Molina, M.I., Petruccelli, S. and Añón, M.C. (2004) Effect of pH and ionic strength modifications on thermal denaturation of the 11S globulin of sunflower (Helianthus annuus). Journal of Agricultural and Food Chemistry 54, 60236029.CrossRefGoogle Scholar
Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2009) Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant and Cell Physiology 50, 13451363.CrossRefGoogle Scholar
Neuhoff, V., Arold, N., Taube, D. and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255262.CrossRefGoogle ScholarPubMed
Oh, M.H., Wang, X., Kota, U., Goshe, M., Clouse, S. and Huber, S. (2009) Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106, 658663.CrossRefGoogle ScholarPubMed
Osborne, T.B. (1924) The vegetable proteins. London, Longmans, Green and Co.Google Scholar
Pérez-Reinado, E., Ramírez-Boo, M., Garrido, J.J., Jorrín, J.V. and Moreno, A. (2007) Towards a global analysis of porcine alveolar macrophages proteins through two-dimensional electrophoresis and mass spectrometry. Developmental and Comparative Immunology 31, 12201232.CrossRefGoogle ScholarPubMed
Pinedo, M., Regente, M., Elizalde, M., Quiroga, I., Pagnussat, L., Jorrín-Novo, J., Maldonado, A. and de la Canal, L. (2012) Extracellular sunflower proteins: evidence on non-classical secretion of a jacalin-related lectin. Protein and Peptide Letters 19, 270276.CrossRefGoogle ScholarPubMed
Rahma, E.H. and Narasinga Rao, M.S. (1979) Characterization of sunflower proteins. Journal of Food Science 44, 579582.CrossRefGoogle Scholar
Raymond, J., Robin, J.M. and Azanza, J.L. (1995) 11S seed storage proteins from Helianthus species (Compositae): biochemical, size and charge heterogeneity. Plant Systematics and Evolution 198, 195208.CrossRefGoogle Scholar
Schwenke, K.D., Pahtz, W.L.K.J. and Schultz, M. (1979) On oil seed proteins Part II. Purification, chemical composition and some physico-chemical properties of the 11S globulin (Helinthinin) in sunflower seed. Nahrung 23, 241254.CrossRefGoogle Scholar
Serre, M., Feingold, S., Salaberry, T., Leon, A. and Berry, S. (2001) The genetic map position of the locus encoding the 2S albumin seed storage proteins in cultivated sunflower (Helianthus annuus L.). Euphytica 121, 273278.CrossRefGoogle Scholar
Shewry, P.R., Napier, J.A. and Tatham, A.S. (1995) Seed storage proteins: structure and biosynthesis. The Plant Cell 7, 945956.Google ScholarPubMed
Smith, P.K., Krohn, R.I., Hermanson, G.T. and Mallia, A.K. (1985) Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150, 7685.CrossRefGoogle ScholarPubMed
Vonder Haar, R.A., Allen, R.D., Cohen, E.A., Nessler, C.L. and Thomas, T.L. (1988) Organization of the sunflower 11S storage protein gene family. Gene 74, 433443.CrossRefGoogle ScholarPubMed
Wan, l., Ross, A., Yang, J., Hegedus, D. and Kermode, A. (2007) Phosphorylation of the 12S globulin cruciferin in wild-type and abi1-1 mutant Arabidopsis thaliana (thale cress) seeds. Biochemical Journal 404, 247256.CrossRefGoogle Scholar
Zolnierowics, S. and Bollen, M. (2000) Protein phosphorylation and protein phosphatases. EMBO Journal 19, 483488.Google Scholar