Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:19:02.687Z Has data issue: false hasContentIssue false

Heteromorphism in seeds of Leptocereus scopulophilus (Cactaceae) from Pan de Matanzas, Cuba

Published online by Cambridge University Press:  23 October 2017

José Angel García-Beltrán
Affiliation:
Jardín Botánico Nacional, Universidad de La Habana, Carretera del Rocío Km 3½, Calabazar, Boyeros, CP 19230, La Habana, Cuba
Duniel Barrios*
Affiliation:
Jardín Botánico Nacional, Universidad de La Habana, Carretera del Rocío Km 3½, Calabazar, Boyeros, CP 19230, La Habana, Cuba
Alina Cuza-Pérez
Affiliation:
Cuban Society of Botany
*
*Correspondence Email: [email protected]

Abstract

Seed heteromorphism is the formation of different seed morphs from the same individual. Two seed morphs have been preliminarily observed in Leptocereus scopulophilus. One morph shows an apparent natural scarification of its coat. Herein we describe the seeds, taking into account shape, coat integrity, surface, dimensions, mass and the position of germination cracks. We defined two seed morphs using the integrity of the spermoderma: fragmented seed coats (FSC) and complete seed coats (CSC). We also evaluated minimum germination time, germination rate and germinability. The seed morphs did not differ significantly in traits; however, regular striations along the cuticle of the periclinal walls were more visible in the FSC compared with the CSC. Both seed morphs displayed anticlinal cell boundaries in the border region that are channelled and straight in the dorsal-ventral region but difficult to define in the lateral region. We found four morphological variations in different positions where the radicle or cotyledons emerge and variations in cuticle thickness in different regions of the seed that could determine the formation of cracks during germination. All germination variants occurred in both seed morphs, albeit in different proportions. Germination was higher and faster for the FSC compared with the CSC. These germination differences could be related to a thinner cuticle in the FSC and the punctual release of its spermoderma, which facilitates a quick imbibition of the embryo and the breaking of the seed coat. Our results indicate that differences in germination parameters between the two seed morphs relate to differences in the percentage of dormant seeds, which favour the temporal expansion of germination and reduce competition between siblings. To propagate the species for conservation purposes, we recommend using FSC, while CSC may be used to establish a seed collection ex situ.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Espino, R., Godínez-Álvarez, H. and De la Torre-Almaráz, R. (2014) Seed banking in the columnar cactus Stenocereus stellatus: distribution, density and longevity of seeds. Seed Science Research 24, 315320.CrossRefGoogle Scholar
Andersson, L. and Milberg, P. (1998) Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Science Research 8, 2938.Google Scholar
Angoa-Román, M., Bullock, S.H. and Kawashima, T. (2005) Composition and dynamics of the seed bank of coastal scrub in Baja California. Madroño 52, 1120.Google Scholar
Aragón-Gastélum, J.L., Reyes-Olivas, Á., Sánchez-Soto, B.H., Casillas-Álvarez, P. and Flores, J. (2013) Vivipary in Ferocactus herrerae (Cactaceae) in Northern Sinaloa, México. Bradleya 3, 4452.Google Scholar
Areces, A. (1993) Leptocereus scopulophilus (Cactaceae), a new species from western Cuba. Brittonia 45, 226230.Google Scholar
Areces, A. (2003) Leptocereus (A. Berger) Britton and Rose: a monographic study of a West Indian genus of Cactaceae (Cactoideae). Inferences from morphological and molecular data. PhD thesis, University of New York, 507 pp.Google Scholar
Arroyo-Cosultchi, G., Golubov, J. and Mandujano, M.C. (2016) Pulse seedling recruitment on the population dynamics of a columnar cactus: effect of an extreme rainfall event. Acta Oecologica 71, 5260.Google Scholar
Ayala-Cordero, G., Terrazas, T., López-Mata, L. and Trejo, C. (2004) Variación en el tamaño y peso de la semilla y su relación con la germinación en una población de Stenocereus beneckei . Interciencia 29, 692697.Google Scholar
Barrios, D. (2014) Leptocereus scopulophilus Areces. Bissea 8 (número especial 1), 8990.Google Scholar
Barrios, D., Flores, J., González-Torres, L.R. and Palmarola, A. (2015) The role of mucilage in the germination of Leptocereus scopulophilus (Cactaceae) seeds from Pan de Matanzas, Cuba. Botany 93, 251255.Google Scholar
Barrios, D., González-Torres, L.R. and García-Beltrán, J.A. (2012) Vivipary in Cuban cacti: a pioneer study in Leptocereus scopulophilus . Bradleya 30, 147150.CrossRefGoogle Scholar
Barrios, D., Mancina, C.A. and González-Torres, L.R. (2012) Evidencias de dispersión de semillas de plantas nativas por Capromys pilorides (Rodentia: Capromyidae). Revista del Jardín Botánico Nacional 32–33, 315317.Google Scholar
Barthlott, W. and Hunt, D. (2000) Seed Diversity in the Cactaceae Subfamily Cactoideae. Milborne, Port, DH Books.Google Scholar
Baskin, C.C. and Baskin, J.M. (2014) Seeds: Ecology, Biogeography and Evolution of Dormancy and Germination. New York, Academic Press.Google Scholar
Bowers, J.E. (2000) Does Ferocactus wislizeni (Cactaceae) have a between-year seed bank? Journal of Arid Environments 45, 197205.Google Scholar
Bowers, J.E. (2005) New evidence for persistent or transient seed banks in three Sonoran desert cacti. The Southwestern Naturalist 50, 482487.CrossRefGoogle Scholar
Bravo-Hollis, H. and Sánchez-Mejorada, H. (1991) Las Cactáceas de México. Vol I. México D. F., Universidad Nacional Autónoma de México.Google Scholar
Bregman, R. and Bouman, F. (1983) Seed germination in Cactaceae. Botanical Journal of the Linnean Society 86, 357374.Google Scholar
Cano-Salgado, A., Zavala-Hurtado, J.A., Orozco-Segovia, A., Valverde-Valdés, M.T. and Pérez-Rodríguez, P. (2012) Composición y abundancia del banco de semillas en una región semiárida del trópico mexicano: patrones de variación espacial y temporal. Revista Mexicana de Biodiversidad 83, 437446.Google Scholar
Cheplick, G.P. (1996) Do seed germination patterns in cleistogamous annuals reduce the risk of sibling competition? Journal of Ecology 84, 247255.CrossRefGoogle Scholar
Conde, F.L. (1975). Vivipary in Epiphyllum . Cactus Succulents Journal 47, 3839.Google Scholar
Cochrane, J.A., Crawford, A.D. and Monks, L.T. (2007) The significance of ex situ seed conservation to reintroduction of threatened plants. Australian Journal of Botany 55, 356361.Google Scholar
Cota-Sánchez, J.H. (2004) Vivipary in the Cactaceae: its taxonomic occurrence and biological significance. Flora 199, 481490.Google Scholar
Cota-Sánchez, J.H. and Abreu, D.D. (2007) Vivipary and offspring survival in the epiphytic cactus Epiphyllum phyllanthus (Cactaceae). Journal of Experimental Botany 58, 38653873.Google Scholar
Cota-Sánchez, J.H., Reyes-Oliva, A. and Sánchez-Soto, B. (2007) Vivipary in coastal cacti: a potential reproductive strategy in halophytic environments. American Journal of Botany 94, 15771581.Google Scholar
Cota-Sánchez, J.H., Reyes-Olivas, Á. and Abreu, D.D. (2011) Vivipary in the cactus family: a reply to Ortega-Baes et al.’s evaluation of 25 species from northwestern Argentina. Journal of Arid Environments 75, 878880.Google Scholar
de Viana, M.L. (1999) Seed production and seed bank of Trichocereus pasacana (Cactaceae) in northwestern Argentina. Tropical Ecology 40, 7984.Google Scholar
Fenner, M. (1985) Seed Ecology. London, Chapman and Hall.Google Scholar
Flores, J. and Briones, O. (2001) Plant life-form and germination in a Mexican intertropical desert: effects of soil water potential and temperature. Journal of Arid Environments 7, 485497.Google Scholar
González-Torres, L.R., Barrios, D. and Palmarola, A. (2012) The ecology and natural history of Leptocereus scopulophilus (Cactaceae). Cactus World 30, 110114.Google Scholar
González Torres, L.R., Palmarola, A., González Oliva, L., Bécquer, E.R., Testé, E., Castañeira-Colomé, M.A., Barrios, D., Gómez-Hechavarría, J.L., García-Beltrán, J.A., Granado, L., Rodríguez-Cala, D. and Regalado, L. (Comp.) (2016) Lista Roja de la Flora de Cuba. Bissea 10 (número especial 1), 33283.Google Scholar
Goodman, J., Walters, D., Bradley, K., Maschinski, J. and Salazar, A. (2012) Seeds of endangered Harrisia fragrans form persistent soil seed banks and withstand orthodox storage conditions. Haseltonia 18, 8594.Google Scholar
Janzen, D.H. (1970) Herbivores and the number of tree species in tropical forests. American Naturalist 104, 501528.Google Scholar
Kuang, A., Xiao, Y. and Musgrave, M.E. (1996) Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions. Annals of Botany 78, 343351.Google Scholar
Leverett, L.D. and Jolls, C.L. (2014) Cryptic seed heteromorphism in Packera tomentosa (Asteraceae): differences in mass and germination. Plant Species Biology 29, 169180.CrossRefGoogle Scholar
Liyanage, G., Ayre, D.J. and Ooi, M.K.J. (2016) Seedling performance covaries with dormancy thresholds: maintaining cryptic seed heteromorphism in a fire-prone system. Ecology 97, 30093018.Google Scholar
Lu, J., Tan, D., Baskin, J.M. and Baskin, C.C. (2010) Fruit and seed heteromorphism in the cold desert annual ephemeral Diptychocarpus strictus (Brassicaceae) and possible adaptive significance. Annals of Botany 105, 9991014.CrossRefGoogle ScholarPubMed
Lu, J.J., Tan, D.Y., Baskin, J.M. and Baskin, C.C. (2014) Germination season and watering regime, but not seed morph, affect life history traits in a cold desert diaspore-heteromorphic. PloS ONE 9, e102018.Google Scholar
Maiti, R.K., Hernández-Piñero, J.L. and Valdéz-Marroqumín, M. (1994) Seed ultrastructure and germination of some species of Cactaceae . Phyton 55, 97105.Google Scholar
Matilla, A., Gallardo, M. and Puga-Hermida, M.I. (2005) Structural, physiological and molecular aspects of heterogeneity in seeds: a review. Seed Science Research 15, 6376.Google Scholar
Montiel, S., and Montaña, C. (2003) Seed bank dynamics of the desert cactus Opuntia rastrera in two habitats from the Chihuahuan Desert. Plant Ecology 166, 241248.Google Scholar
Naranjo, M.E., Rengifo, C. and Soriano, P.J. (2003) Effect of ingestion by bats and birds on seed germination of Stenocereus griseus and Subpilocereus repandus (Cactaceae). Journal of Tropical Ecology 19, 1925.Google Scholar
Pérez-Sánchez, R.M., Jurado, E., Chapa-Vargas, L. and Flores, J. (2011) Seed germination of Southern Chihuahuan Desert plants in response to elevated temperatures. Journal of Arid Environments 75, 978980.Google Scholar
Powell, A.A., Oliveira, M.A. and Matthews, S. (1986) The role of imbibition damage in determining the vigour of white and coloured seed lots of dwarf French beans (Phaseolus vulgaris). Journal of Experimental Botany 57, 716722.CrossRefGoogle Scholar
Puga-Hermida, M.I., Gallardo, M., Rodríguez-Gacio, M.C. and Matilla, A. (2003) The heterogeneity of turniptops (Brassica rapa) seeds inside the silique affects germination, the activity of the final step of the ethylene pathway, and abscisic acid and polyamine content. Functional Plant Biology 30, 767775.Google Scholar
Ranal, M.A., Santana, D.G., Resende, W. and Mendes-Rodrigues, C. (2009) Calculating germination measurements and organizing spreadsheets. Revista Brasileira de Botânica 32, 849855.Google Scholar
Roberts, E.H. (1991) Genetic conservation in seed banks. Biological Journal of the Linnean Society 43, 2329.Google Scholar
Rojas-Aréchiga, M. and Batis, A. (2001) Las semillas de cactáceas. ¿forman bancos en el suelo? Cactáceas y Suculentas Mexicanas 46, 7682.Google Scholar
Rojas-Aréchiga, M. and Mandujano-Sánchez, M.C. (2009) Nuevo registro de semillas vivíparas en dos especies de cactáceas. Cactáceas y Suculentas Mexicanas 54, 123127.Google Scholar
Rojas-Aréchiga, M., Mandujano, M.C. and Golubov, J.K. (2013) Seed size and photoblastism in species belonging to tribe Cacteae (Cactaceae). Journal of Plant Research 126, 373386.Google Scholar
Sánchez-Salas, J., Flores, J. and Martínez-García, E. (2006) Efecto del tamaño de semilla en la germinación de Astrophytum myriostigma Lemaire. (Cactaceae), especie amenazada de extinción. Interciencia 31, 371375.Google Scholar
Santos, D.M., Santos, J.M., Souza, D.N., Andrade, J.R., Silva, K.A., Andrade, W.M. and Araújo, E.L. (2015) O que mais influencia a densidade do banco de sementes do solo de Cereus jamacaru DC. subsp. jamacaru (Cactaceae): variação espacial ou temporal? Gaia Scientia 9, 167174.Google Scholar
Schupp, E.W. (1988) Seed and early seedling predation in the forest understory and in treefall gaps. Oikos 51, 7178.Google Scholar
Seal, C.E., Flores, J. , Ceroni, A., Dávila, P., León-Lobos, P., Ortega-Baes, P., Galíndez, G., Aparicio-González, M.A., Castro, V., Daws, M.I., Eason, M., Flores Ortiz, C.M., del Fueyo, P.A., Olwell, P., Ordoñez, C., Peñalosa, I., Quintanar, R., Ramírez, N., Rojas-Aréchiga, M., Rosas, M., Sandoval, A., Stuppy, W., Ulian, T., Vázquez, J., Walter, H., Way, M. and Pritchard, H.W. (2009) The Cactus Seed Biology Database (release 1). Royal Botanic Gardens, Kew.Google Scholar
Sileshi, G.W. (2012) A critique of current trends in the statistical analysis of seed germination and viability data. Seed Science Research 22, 145159.CrossRefGoogle Scholar
Smith, M.T., Wang, S.P.B. and Msanga, H.P. (2002) Dormancy and germination, pp. 149176 in Vozzo, J.A. (ed), Tropical Tree Seed Manual. Washington DC, USDA Forest Service Agriculture Handbook.Google Scholar
Venable, D.L. (1985) The evolutionary ecology of seed heteromorphism. American Naturalist 126, 577595.Google Scholar
Venable, D.L. (1992) Size-number trade-offs and the variation of seed size with plant resource status. American Naturalist 140, 287304.Google Scholar
Vishenskaya, T.D. (1991) Cactaceae, pp. 4157 in Tarhtajan, A. (ed), Anatomia Seminusn Comparativa. Dicotiledones, Caryophyllidae-Dilleniidae. Leningrado, Nauka.Google Scholar