Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T01:21:46.517Z Has data issue: false hasContentIssue false

Germination patterns and ecological characteristics of Vellozia seeds from high-altitude sites in south-eastern Brazil

Published online by Cambridge University Press:  02 January 2013

Letícia A. Soares da Mota
Affiliation:
Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais (UFMG), CP 486, CEP 31270-970, Belo Horizonte, MG, Brasil
Queila S. Garcia*
Affiliation:
Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais (UFMG), CP 486, CEP 31270-970, Belo Horizonte, MG, Brasil
*
*Correspondence E-mail: [email protected]

Abstract

The present work aims to determine whether there are patterns of seed and germination characteristics in Vellozia due to the phylogenetic proximity among the species examined and if these characteristics explain their restricted geographical distributions. We evaluated the germination characteristics of freshly collected seeds from 13 species of the genus Vellozia (Velloziaceae) that show different degrees of endemism, collected at various locations in the Espinhaço Mountain Range in Minas Gerais State, south-eastern Brazil. The size and mass of the seeds, as well as the influence of light and temperature on their germination, were measured. Experiments were performed in germination chambers under constant temperatures of 10–40°C (intervals of 5°C), with a 12-h photoperiod, as well as in continuous darkness. All species studied had small seeds with mass varying from 0.06 to 1.21 mg. Most species required light for germination, displaying high germinability in the range of 15–40°C; some species, however, germinated in the absence of light at the highest temperatures (35 and 40°C). The sizes and masses of the seeds showed significant linear correlations, but light sensitivity was not related to these seed characteristics. The responses observed suggest that light requirement for germination, associated with the small sizes of Vellozia spp. seeds, contribute to the formation of persistent seed banks. The observed tolerance of these seeds to a wide range of germination temperatures is consistent with the large daily temperature fluctuations experienced in campos rupestres sites, although these seed characteristics cannot by themselves explain the high degree of endemism or the restricted distributions observed among the species examined.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, M.E.P. and Garcia, Q.S. (2005) Efeito da luz e da temperatura na germinação de sementes de quatro espécies de Xyris L. (Xyridaceae) ocorrentes na Serra do Cipó, MG, Brasil. Acta Botanica Brasilica 19, 149154.CrossRefGoogle Scholar
Baskin, C.C. and Baskin, J.M. (1988) Germination ecophysiology of herbaceous plant species in a temperate region. American Journal of Botany 7, 286305.CrossRefGoogle Scholar
Bewley, J.D. and Black, M. (1994) Seeds: physiology of development and germination (2nd edition). New York, Plenum Press.CrossRefGoogle Scholar
Biodiversitas (2007) Revisão das listas das espécies da flora e da fauna ameaçadas de extinção do estado de Minas Gerais. Belo Horizonte, Fundação Biodiversitas.Google Scholar
Cheib, A.L. and Garcia, Q.S. (2012) Longevity and germination ecology of seeds of endemic Cactaceae species from high-altitude sites in south-eastern Brazil. Seed Science Research 22, 4553.CrossRefGoogle Scholar
Conceição, A.A. and Pirani, J.R. (2005) Delimitação de habitats em campos rupestres na Chapada Diamantina, Bahia: substratos, composição florística e aspectos estruturais. Boletim de Botânica da Universidade de São Paulo 23, 85111.CrossRefGoogle Scholar
Conover, W.J. (1999) Practical nonparametric statistics (3rd edition). New York, John Wiley & Sons.Google Scholar
Donohue, K., Dorn, L., Griffith, C., Kim, E., Aguilera, A., Polisetty, C.R. and Schmitt, J. (2005) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution 59, 758770.Google ScholarPubMed
Donohue, K., Heschel, M.S., Chiang, G.C.K., Butler, C.M. and Barua, D. (2007) Phytochrome mediates germination responses to multiple seasonal cues. Plant Cell & Environment 30, 202212.CrossRefGoogle ScholarPubMed
Fenner, M. and Thompson, K. (2005) The ecology of seeds. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Ferreira, A.G., Cassol, B., Rosa, S.G.T., Silveira, T.S., Stival, A.L. and Silva, A.A. (2001) Germinação de sementes de Asteraceae nativas no Rio Grande do Sul, Brasil. Acta Botanica Brasilica 15, 231242.CrossRefGoogle Scholar
Garcia, Q.S. and Diniz, I.S.S. (2003) Comportamento germinativo de três espécies de Vellozia da Serra do Cipó (MG). Acta Botanica Brasilica 17, 487494.CrossRefGoogle Scholar
Garcia, Q.S. and Oliveira, P.G. (2007) Germination patterns and seed longevity of monocotyledons from the Brazilian campos rupestres. Seed Science Biotechnology 1, 3541.Google Scholar
Garcia, Q.S., Jacobi, C.M. and Ribeiro, B.A. (2007) Resposta germinativa de duas espécies de Vellozia (Velloziaceae) dos campos rupestres de Minas Gerais, Brasil. Acta Botanica Brasilica 21, 451456.CrossRefGoogle Scholar
Giulietti, A.M. and Pirani, J.R. (1988) Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brazil. pp. 3969in Heyer, W.R.; Vanzolini, P.E. (Eds) Proceedings of a Workshop on Neotropical Biodiversity Distribution Patterns. Rio de Janeiro, Academia Brasileira de Ciências.Google Scholar
Giulietti, A.M., Harley, R.M., De Queiroz, L.P., Wanderley, M.G.L. and Van Den Berg, C. (2005) Biodiversity and conservation of plants in Brazil. Conservation Biology 19, 632639.CrossRefGoogle Scholar
Harley, R.M. (1988) Evolution and distribution of Eriope (Labiatae) and its relatives in Brazil. pp. 71120in Heyer, W.R.; Vanzolini, P.E. (Eds) Proceedings of a Workshop on Neotropical Biodiversity Distribution Patterns. Rio de Janeiro, Academia Brasileira de Ciências.Google Scholar
Heggie, L. and Halliday, K.J. (2005) The highs and lows of plant life: temperature and light interactions in development. International Journal of Developmental Biology 49, 675687.CrossRefGoogle ScholarPubMed
Heschel, M.S., Selby, J., Whitelam, G.C., Sharrock, R.A. and Donohue, K. (2007) A new role for phytochromes in temperature-dependent germination. New Phytologist 174, 735741.CrossRefGoogle ScholarPubMed
Hölzel, N. and Otte, A. (2004) Ecological significance of seed germination characteristics in flood-meadow species. Flora 199, 1224.CrossRefGoogle Scholar
Jacobi, C.M. and Carmo, F.F. (2008) The contribution of ironstone outcrops to plant diversity in the Iron Quad>, a threatened Brazilian landscape. Ambio 37, 324326.CrossRefGoogle Scholar
Jakobsson, A. and Eriksson, O. (2000) A comparative study of seed number, seed size and recruitment in grassland plants. Oikos 88, 494502.CrossRefGoogle Scholar
Khurana, E. and Singh, J.S. (2001) Ecology of tree seed and seedlings: implications for tropical forest conservation and restoration. Current Science 80, 748757.Google Scholar
Labouriau, L.G. (1983) A Germinação das Sementes. Washington DC, Secretaria Geral da Organização dos Estados Americanos.Google Scholar
Leishman, M.R., Wright, I.J., Moles, A.T. and Westoby, M. (2000) The evolutionary ecology of seed size. pp. 3157in Fenner, M. (Ed.) Seeds – the ecology of regeneration in plant communities. Wallingford, CAB International.CrossRefGoogle Scholar
Madeira, J.A. and Fernandes, G.W. (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brazil. Journal of Tropical Ecology 15, 463479.CrossRefGoogle Scholar
Mamo, N., Mihretu, M., Fekadu, M., Tigabu, M. and Teketay, D. (2006) Variation in seed and germination characteristics among Juniperus procera populations in Ethiopia. Forest Ecology and Management 225, 320327.CrossRefGoogle Scholar
Mello-Silva, R. (1995) Aspectos taxonômicos, biogeográficos, morfológicos e biológicos das Velloziaceae de Grão-Mogol, Minas Gerais, Brasil. Boletim de Botânica da Universidade de São Paulo 14, 4979.CrossRefGoogle Scholar
Mello-Silva, R. (2005) Morphological analysis, phylogenies and classification in Velloziaceae. Botanical Journal of the Linnean Society 148, 157173.CrossRefGoogle Scholar
Meyer, S.E., Kitchen, S.G. and Carlson, S.L. (1995) Seed germination timing patterns in intermountain Penstemon (Scrophulariaceae). American Journal of Botany 82, 377389.CrossRefGoogle Scholar
Moles, A.T., Warton, D.I. and Westoby, M. (2003) Seed size and survival in the soil in arid Australia. Australian Ecology 28, 575585.CrossRefGoogle Scholar
Moles, A.T., Falster, D.S., Leishman, M.R. and Westoby, M. (2004) Small-seeded species produce more seeds per square meter of canopy per year, but not per individual per lifetime. Journal of Ecology 92, 384396.CrossRefGoogle Scholar
Moles, A.T., Ackerly, D.D., Webb, C.O., Tweddle, J.C., Dickie, J.B. and Westoby, M. (2005) A brief history of seed size. Science 307, 576580.CrossRefGoogle ScholarPubMed
Norden, N., Daws, M.I., Antoine, C., Gonzalez, M.A., Garwood, N.C. and Chave, J. (2008) The relationship between seed mass and mean time to germination for 1037 tree species across five tropical forests. Functional Ecology 23, 203210.CrossRefGoogle Scholar
Oliveira, P.G. and Garcia, Q.S. (2005) Efeitos da luz e da temperatura na germinação de sementes de Syngonanthus elegantulus Ruhland, S. elegans (Bong.) Ruhland e S. venustus Silveira (Eriocaulaceae). Acta Botanica Brasilica 19, 639645.CrossRefGoogle Scholar
Oliveira, P.G. and Garcia, Q.S. (2011) Germination characteristics of Syngonanthus seeds (Eriocaulaceae) in campos rupestres vegetation in southeastern Brazil. Seed Science Research 21, 3945.CrossRefGoogle Scholar
Orozco-Almanza, M.S., León-García, L.P., Grether, R. and García-Moya, E. (2003) Germination of four species of the genus Mimosa (Leguminosae) in a semi-arid zone of Central Mexico. Journal of Arid Environments 55, 7592.CrossRefGoogle Scholar
Pons, T.L. (1992) Seed responses to light. pp. 259284in Fenner, M. (Ed.) Seeds: the ecology of regeneration in plant communities. Wallingford, CAB International.Google Scholar
Riley, G.J.P. (1981) Effects of high temperature on protein synthesis during germination of maize (Zea mays L.). Planta 151, 7580.CrossRefGoogle ScholarPubMed
Schütz, W. (2000) Ecology of seed dormancy and germination in sedges (Carex). Perspectives in Plant Ecology, Evolution and Systematics 3, 6789.CrossRefGoogle Scholar
Smith, H. (1975) Phytochrome and photomorphogenesis: an introduction to the photocontrol of plant development. London, McGraw Hill.Google Scholar
Specht, C.E. and Keller, E.R.J. (1997) Temperature requirements for seed germination in species of the genus Allium L. Genetic Resources and Crop Evolution 44, 509517.CrossRefGoogle Scholar
Stricker, D. (2008) BrightStat.com: Free statistics online. Computer Methods and Programes in Biomedicine 92, 135143.CrossRefGoogle ScholarPubMed
Thompson, K. (1987) Seeds and seed banks. New Phytologist 106, 2334.CrossRefGoogle Scholar
Thompson, K. (2000) The functional ecology of soil seed banks. pp. 215236in Fenner, M. (Ed.) Seeds: the ecology of regeneration in plant communities. Wallingford, CAB International.CrossRefGoogle Scholar
Thompson, K. and Ceriani, R.M. (2003) No relationship between range size and germination niche width in the UK herbaceous flora. Functional Ecology 17, 335339.CrossRefGoogle Scholar
Van Assche, J., Van Nerum, D. and Darius, P. (2002) The comparative germination ecology of nine Rumex species. Plant Ecology 159, 131142.CrossRefGoogle Scholar
Vázquez-Yanes, C. and Orozco-Segovia, A. (1993) Patterns of seed longevity and germination in the tropical rain forest. Annual Review in Ecology and Systematics 24, 6987.CrossRefGoogle Scholar
Westoby, M., Jurado, E. and Leishman, M. (1992) Comparative evolutionary ecology of seed size. Tree 7, 368372.Google ScholarPubMed