Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T19:56:40.041Z Has data issue: false hasContentIssue false

Germination of fresh and frost-treated seeds from dry Central Asian steppes

Published online by Cambridge University Press:  22 February 2007

K. Wesche*
Affiliation:
Institute of Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, 06099, Halle, Germany
M. Pietsch
Affiliation:
Institute of Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, 06099, Halle, Germany
K. Ronnenberg
Affiliation:
Institute of Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, 06099, Halle, Germany
R. Undrakh
Affiliation:
Faculty of Biology, National University of Mongolia, PO Box 377, Ulaanbaatar, Mongolia
I. Hensen
Affiliation:
Institute of Geobotany and Botanical Garden, Martin-Luther-University Halle-Wittenberg, 06099, Halle, Germany
*
*Correspondence: Fax: +49 345 55 27228 Email: [email protected]

Abstract

We tested the germination of fresh and frost-treated seeds of 26 species of southern Mongolian mountain and desert steppes, covering the major growth forms of woody and herbaceous perennials and short-lived species in the region. In the field, germination depends on rains that are largely restricted to the summer months between June and August. Thus, germination tests were performed at alternating conditions of 10°C in darkness and 20°C in light (12 h/12 h), which correspond to temperatures at the study site in early and late summer. Seeds of both woody and herbaceous perennials germinated well under the chosen conditions and apparently did not require stratification or scarification. In contrast, germination of annual species was mostly below 30%, while seed viability was equally high in all three growth forms. Winter conditions, simulated by freezing dried seeds at −18°C, hardly changed seed germination in the perennial species, but several short-lived species responded with increased germination. Short-lived species are not abundant in the real vegetation, which is governed by perennials. Thus, we conclude that the important species in Mongolian mountain steppes germinate readily without a dormancy-breaking treatment. A review of the available literature revealed that a complete lack of dormancy, or presence of only conditional dormancy, is also widely described for other species of Central Asian deserts and steppes, which is in contrast to data from North American prairies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babaev, A.G. (1999) Desert problems and desertification in Central Asia. Berlin, Springer.CrossRefGoogle Scholar
Bai, W.-M., Bao, X.-M., Li, L.-H. (2004) Effects of Agriophyllum squarrosum seed banks on its colonization in a moving sand dune in Hundshandake Sand Land of China. Journal of Arid Environments 59, 151157.Google Scholar
Barthel, H. (1990) Mongolei–Land zwischen Taiga und Wüste. Gotha, VEB H. Haack.Google Scholar
Baskin, C.C. and Baskin, J.M. (1998) Seeds. Ecology, biogeography, and evolution of dormancy and germination. San Diego, Academic Press.Google Scholar
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.CrossRefGoogle Scholar
Bruelheide, H., Jandt, U., Gries, D., Thomas, F.M., Foetzki, A., Buerkert, A., Gang, W., Zhang, X.M. and Runge, M. (2003) Vegetation changes in a river oasis on the southern rim of the Taklamakan Desert in China between 1956 and 2000. Phytocoenologia 33, 801818.Google Scholar
Fenner, M. and Thompson, K. (2005) The ecology of seeds. (2nd revised edition). Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Flora of China Editorial Committee (1998) Flora of China. Vol. 18. Scrophulariaceae to Gesneriaceae. Beijing Science Press, and St. Louis, Missouri Botanical Garden.Google Scholar
Flora of China Editorial Committee (2000) Flora of China. Vol. 24. Flagellariaceae through Marantaceae. Beijing Science Press, and St. Louis, Missouri Botanical Garden.Google Scholar
Flora of China Editorial Committee (2001a) Flora of China. Vol. 6. Caryophyllaceae through Lardizabalaceae. >Beijing Science Press, and St. Louis, Missouri Botanical Garden.Beijing+Science+Press,+and+St.+Louis,+Missouri+Botanical+Garden.>Google Scholar
Flora of China Editorial Committee (2001b) Flora of China. Vol. 8. Brassicaceae through Saxifragaceae. Beijing Science Press, and St. Louis, Missouri Botanical Garden.Google Scholar
Flora of China Editorial Committee (2003) Flora of China. Vol. 5. Ulmaceae through Basellaceae. Beijing Science Press, and St. Louis, Missouri Botanical Garden.Google Scholar
Gunin, P.D., Slemnev, N.N. and Tsoog, S. (2003) Seed regeneration of dominant plants in ecosystems of the desert zone of Mongolia: dynamics of undergrowth populations. Botaniceskij Zurnal 88, 117.Google Scholar
Gutterman, Y. (1993) Seed germination in desert plants Berlin SpringerCrossRefGoogle Scholar
Hilbig, W. (1995) The vegetation of Mongolia Amsterdam SPB Academic PublishingGoogle Scholar
Hilbig, W. and Knapp, H.D. (1983) Vegetationsmosaik und Florenelemente an der Wald-Steppen-Grenze im Chentej-Gebirge (Mongolei). Flora 174, 189.CrossRefGoogle Scholar
Hilbig, W., Bastian, O., Jäger, E., Bujan-Orsich, C. (1999) Die Vegetation des Uvs Nuur Beckens (Uvs Aimak, Nordwest-Mongolei). Feddes Repertorium 110, 569625.CrossRefGoogle Scholar
Hilbig, W., Jäger, E. and Knapp, H.D. (2004) Die Vegetation des Bogd-uul bei Ulaanbaatar (Mongolei) - Standortsbindung und pflanzengeographische Stellung. Feddes Repertorium 115, 265342.CrossRefGoogle Scholar
Huang, Z.Y. and Gutterman, Y. (1999) Germination of Artemisia sphaerocephala (Asteraceae), occurring in the sandy desert areas of North-west China. South African Journal of Botany 65, 187196.CrossRefGoogle Scholar
Huang, Z.Y. and Gutterman, Y. (2000) Comparison of germination strategies of Artemisia ordosica with its two congeners from deserts of China and Israel. Acta Botanica Sinica 42, 7180.Google Scholar
Huang, Z.Y., Zhang, X.S., Zheng, Q.H. and Gutterman, Y. (2003) Influence of light, temperature, salinity and storage on seed germination of Haloxylon ammodendron. Journal of Arid Environments 55, 453464.CrossRefGoogle Scholar
Huang, Z.Y., Dong, M. and Gutterman, Y. (2004a) Caryopsis dormancy, germination and seedling emergence in sand, of Leymus racemosus (Poaceae), a perennial sand-dune grass inhabiting the Junggar Basin of Xinjang, China. Australian Journal of Botany 52, 519528.CrossRefGoogle Scholar
Huang, Z.Y., Dong, M. and Gutterman, Y. (2004b) Factors influencing seed dormancy and germination in sand, and seedling survival under desiccation, of Psammochloa villosa (Poaceae), inhabiting the moving sand dunes of Ordos, China. Plant and Soil 259, 231241.CrossRefGoogle Scholar
Katoh, K., Takeuchi, K.I., Jiang, D.M., Nan, Y.H. and Kou, Z.W. (1998) Vegetation restoration by seasonal exclosure in the Kerqin Sandy Land, Inner Mongolia. Plant Ecology 139, 133144.CrossRefGoogle Scholar
Khan, M.A. and Ungar, I.A. (1996) Influence of salinity and temperature on the germination of Haloxylon recurvum Bunge ex. Boiss. Annals of Botany 78, 547551.CrossRefGoogle Scholar
Khan, M.A., Gul, B. and Webber, D.J. (2001) Seed germination characteristics of Halogeton glomeratus. Canadian Journal of Botany 79, 11891194.CrossRefGoogle Scholar
Lauenroth, W.K. and Milchunas, D.G. (1992) Short-grass Steppe. pp. 183226. in Coupland, R.T. (Ed.) Natural grasslands. Ecosystems of the world. Vol. 8A. Amsterdam, Elsevier.Google Scholar
Lavrenko, E.M. and Karamysheva, Z.V. (1993) Steppes of the former Soviet Union and Mongolia. pp. 359. in Coupland, R.T.Natural grasslands. Ecosystems of the world. Amsterdam, Elsevier.Google Scholar
Liang, C., Michalk, D.L. and Millar, G.D. (2002) The ecology and growth patterns of Cleistogenes species in degraded grasslands of eastern Inner Mongolia, China. Journal of Applied Ecology 39, 584594.CrossRefGoogle Scholar
Liu, G.S. Qi, D.M., Shu Q.Y. (2004) Seed germination characteristics in the perennial grass species Leymus chinensis. Seed Science and Technology 32, 717725.CrossRefGoogle Scholar
Liu, Z. Li, X., Li R., Jiang, D. and Cao, C. (2003) A comparative study on seed germination of 15 grass species in Kerqin Sandyland. Chinese Journal of Applied Ecology 14, 14161420.Google ScholarPubMed
Meusel, H., Jäger, E. and Weinert, E. (1965) Vergleichende Chorologie der zentraleuropäischen Flora. Vol. I. Text und Kartenband. Jena, Fischer.Google Scholar
Mukhammedov, G.M., Durikov, M.K. and Nechaeva, N.T. (1999) The technology of desert pasture improvement. pp. 101114. in Babaev, A.G.Desert problems and desertification in Central Asia. Berlin, Springer.CrossRefGoogle Scholar
Nie, C.-L. and Zheng, Y.R. (2005) Effects of water supply and sand burial on seed germination and seedling emergence of four dominant psammophytes in the Ordos Plateau. Acta Phytoecologica Sinica 29, 3241.Google Scholar
Nikolaeva, M.G. (2001) Ecological and physiological aspects of seed dormancy and germination (review of investigations of the last century). Botaniceskij Zurnal 86, 114.Google Scholar
Nikolaeva, M.G., Razumova, M.V. and Gladkova, V.N. (1985) Pravocnik po prorascivanij pokojascichsja semjan (Reference book on dormant seed germination). Leningrad, Nauka Publishers.Google Scholar
Ren, J. and Tao, L. (2003) Effect of hydration-dehydration cycles on germination of seven Calligonum species. Journal of Arid Environments 55, 111122.CrossRefGoogle Scholar
Ronnenberg, K. (2005) Reproductive ecology of two common woody species – Juniperus sabina and Artemisia santolinifolia – in mountain steppes of southern Mongolia. Erforschung biologischer Ressourcen der Mongolei 9, 207223.Google Scholar
Schmutz, E.M., Smith, E.L., Cox, M.L., Klemmedson, J.O., Norris, J.J. and Fierro, L.C. (1992) Desert grassland. pp. 337362. in Coupland, R.T.Natural grasslands. Ecosystems of the world. Amsterdam, Elsevier.Google Scholar
Sneath, D. (1998) State policy and pasture degradation in Inner Asia. Science 281, 11471148.CrossRefGoogle Scholar
Song, M.H., Dong, M. and Jiang, G.M. (2002) Importance of clonal plants and plant species diversity in the Northeast China Transect. Ecological Research 17, 705716.CrossRefGoogle Scholar
Thompson, K., Ceriani, R.M., Bakker, J.P. and Bekker, R.M. (2003) Are seed dormancy and persistence in soil related?. Seed Science Research 13, 97100.CrossRefGoogle Scholar
Tobe, K., Zhang, L. and Omasa, K. (1999) Effects of NaCl on seed germination and growth of five nonhalophytic species from a Chinese desert environment. Seed Science and Technology 27, 851863.Google Scholar
Tobe, K. Li, X.M., Omasa, K. (2000a) Effects of sodium chloride on seed germination and growth of two Chinese desert shrubs, Haloxylon ammodendron and H. persicum (Chenopodiaceae). Australian Journal of Botany 48, 455460.CrossRefGoogle Scholar
Tobe, K. Li, X., Omasa, K. (2000b) Seed germination and radicle growth of a halophyte, Kalidium caspicum (Chenopodiaceae). Annals of Botany 85, 391396.CrossRefGoogle Scholar
Tobe, K., Zhang, L.P., Qiu, G.Y., Shimizu, H. and Omasa, K. (2001) Characteristics of seed germination in five non-halophytic Chinese desert shrub species. Journal of Arid Environments 47, 191201.CrossRefGoogle Scholar
Tobe, K. Li, X., Omasa, K. (2002) Effects of sodium, magnesium and calcium salts on seed germination and radicle survival of a halophyte, Kalidium caspicum (Chenopodiaceae). Australian Journal of Botany 50, 163169.CrossRefGoogle Scholar
Tobe, K. Li, X., Omasa, K. (2004) Effects of five different salts on seed germination and seedling growth of Haloxylon ammodendron (Chenopodiaceae). Seed Science Research 14, 345353.CrossRefGoogle Scholar
Tobe, K., Zhang, L. and Omasa, K. (2005) Seed germination and seedling emergence of three annuals growing on desert sand dunes in China. Annals of Botany 95, 649659.CrossRefGoogle ScholarPubMed
Tursunov, Z., Matyunina, T.E., Kiseleva, G.K. and Abdulleva, A.T. (1999) Seed production of the main forest-forming species of the Central Asian deserts. Problemy Osvoeniya Pustyn 2, 4852.Google Scholar
Tzvelev, N.N. (2001) Plants of Central Asia. Vol. 4. Gramineae (Grasses). Enfield, Science Publishers.Google Scholar
Wang, Z.L., Wang, G., Liu, X.-M. (1998) Germination strategy of the temperate sandy desert annual chenopod Agriophyllum squarrosum. Journal of Arid Environments 40, 6976.CrossRefGoogle Scholar
Washitani, I. and Masuda, M. (1990) A comparative study of the germination characteristics of seeds from a moist tall grassland community. Functional Ecology 4, 543557.CrossRefGoogle Scholar
Wesche, K. and Undrakh, R. (2003) The population ecology of Potentilla ikonnikovii, an endemic plant species of the Gobi Altai. Verhandlungen der Gesellschaft für Ökologie 33, 357Google Scholar
Wesche, K., Jäger, E., von Wehrden, H. and Undrakh, R. (2005a) Status and distribution of four endemic vascular plants in the Gobi Altay. Mongolian Journal of Biological Sciences 3, 311.Google Scholar
Wesche, K., Miehe, S. and Miehe, G. (2005b) Plant communities of the Gobi Gurvan Sayhan National Park (South Gobi Aimag, Mongolia). Candollea 60, 149205.Google Scholar
Wesche, K., Ronnenberg, K. and Hensen, I. (2005c) Lack of sexual reproduction in dry mountain steppe populations of the clonal shrub Juniperus sabina L. in semi-arid southern Mongolia. Journal of Arid Environments 63, 390405.CrossRefGoogle Scholar
Yang, Q.-H., Ge, X.-J., Ye, W.-H., Deng, X. and Liao, F.L. (2004) Characteristics of Ammopiptanthus nanus seeds and factors affecting its germination. Acta Phytoecologica Sinica 28, 651656.Google Scholar
Zeng, Y., Wang, Y., Nan, Z., Wei, D., Chen, S. and Li, B. (2003) Soil seed banks of different grassland types of Alashan arid desert region, Inner Mongolia. Chinese Journal of Applied Ecology 14, 14571463.Google ScholarPubMed
Zhang, J., Zhao, H.-L., Zhang, T. and Drake, S. (2005) Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land. Journal of Arid Environments 62, 555566.CrossRefGoogle Scholar
Zheng, Y.R., Xie, Z.X., Gao, Y., Jiang, L.H., Shimizu, H. and Tobe, K. (2004a) Germination responses of Caragana korshinskii Kom. to light, temperature and water stress. Ecological Research 19, 553558.CrossRefGoogle Scholar
Zheng, Y.R., Gao, Y.An, P., Shimizu, H. and Rimmington, G.M. (2004b) Germination characteristics of Agriophyllum squarrosum. Canadian Journal of Botany 82, 16621670.CrossRefGoogle Scholar
Zheng, Y.R., Xie, Z.X., Gao, Y., Shimizu, H., Jiang, L.H. and Yu, Y. (2004c) Ecological restoration in northern China: germination characteristics of nine key species in relation to air seeding. Belgian Journal of Botany 136, 129138.Google Scholar
Zheng, Y.R., Xie, Z.X., Gao, Y., Jiang, L.H., Xing, X.R., Shimizu, H. and Rimmington, G.M. (2005a) Effects of light, temperature and water stress on germination of Artemisia sphaerocephala. Annals of Applied Biology 146, 327335.CrossRefGoogle Scholar
Zheng, Y.R., Xie, Z.X., Yu, Y., Jiang, L.H., Shimizu, H. and Rimmington, G.M. (2005b) Effects of burial in sand and water supply regime on seedling emergence of six species. Annals of Botany 95, 12371245.CrossRefGoogle Scholar
Zhu, X.-W., Huang, Z.-Y., Chu, Y., Zhang, S.-M., Liu, H.-D. and Dong, M. (2004) Effects of burial in sand and seed size on seed germination and seedling emergence in two leguminous shrubs in the Otindag Sandlands. China. Israel Journal of Plant Sciences 52, 133142.CrossRefGoogle Scholar