Published online by Cambridge University Press: 22 February 2007
Relationships between desiccation tolerance and dry matter, water and sugar contents were studied throughout the development of oil palm (Elaeis guineensis Jacq.) zygotic embryos and in immature embryos cultured on a sucrose-enriched medium. Embryo dry weight during in planta development increased between 80 and 140 d after pollination (DAP) and was then stable until maturity. Embryos underwent dehydration until 120 DAP, but their moisture content remained high at maturity (c. 2 g H2O g-1 DW). Desiccation tolerance was acquired between 83 and 104 DAP, and was positively correlated with embryo age and dry weight, and negatively correlated with initial water content during this period. Sucrose, the main soluble sugar present throughout embryo development, accounted for an average of 24% of the dry weight. Glucose and fructose contents decreased to less than 1 mg g-1 DW in embryos at maturity. At 117 DAP, as embryos became tolerant to desiccation, the monosaccharides/sucrose ratio fell to 0.015 and raffinose was detected. Stachyose appeared later in 147-day-old embryos and accumulated until shedding. In vitro culture of immature embryos in the presence of high sucrose concentrations (350 and 700 mM) resulted in an increase in their dry weight and a decrease in their water content, and induced the acquisition of desiccation tolerance. Under these conditions, sucrose accumulated in embryos to 30–40% on a dry weight basis, but neither raffinose nor stachyose was detected. Acquisition of desiccation tolerance by oil palm immature embryos was associated both in planta and in vitro with an accumulation of dry matter, a reduction of moisture content, and a fall in the monosaccharides/sucrose ratio. In planta, survival to dehydration was also related with the deposition of oligosaccharides whereas in vitro, it was related with high sucrose accumulation. The role of sugars in the acquisition of desiccation tolerance in oil palm embryos is discussed.