Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:09:33.778Z Has data issue: false hasContentIssue false

Seeds, recombinant DNA and biodiversity

Published online by Cambridge University Press:  05 January 2012

Elibio L. Rech*
Affiliation:
Embrapa Genetic Resources and Biotechnology, Laboratory of Gene Transfer, Parque Estação Biologica, Brasilia, DF 70770-917, Brazil
*
*Correspondence Email: [email protected]

Abstract

There is a worldwide consensus that the production of food, biomolecules and bioenergy should be sustainably intensified within the next decades. To achieve these goals will depend on the intensification of current practices in agricultural systems fused with a wider understanding and acceptance of genomics, metabolomics, synthetic biology and metabolic engineering. However, genetically modified-derived crops, including commodities and non-commodities, may contribute to establishing a new parameter in the agricultural, pharmaceutical and industrial sectors. Seeds will also play an important role in allowing large-scale production of innovative molecules prospected from biodiversity.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abud, S., Souza, P.I.M., Moreira, C.T., Andrade, S.R.M., Ulbrich, A.V., Vianna, G.R., Rech, E.L. and Aragão, F.J.L. (2003) Gene flow in transgenic soybean in the Cerrado region, Brazil. Pesquisa Agropecuaria Brasileira 38, 12291235.CrossRefGoogle Scholar
Abud, S., Souza, P.I.M., Vianna, G.R., Leonardecz, E., Moreira, C.T., Faleiro, F.G., Junior, J.N., Monteiro, P.M.F.O., Rech, E.L. and Aragão, F.J.L. (2007) Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil. Genetics and Molecular Research 6, 445452.Google ScholarPubMed
Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, D., Datta, K., Datta, S., Dix, P., Fauquet, C., Huang, N., Kohli, A., Mooibroek, H., Nicholson, L., Nguyen, T., Nugent, G., Raemakers, K., Romano, A., Somers, D., Stoger, E., Taylor, N. and Visser, R. (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Molecular Breeding 15, 305327.CrossRefGoogle Scholar
Aragão, F.J.L., Sarokin, L., Vianna, G.R. and Rech, E.L. (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean (Glycine max (L.) Merril) plants at a high frequency. Theoretical and Applied Genetics 101, 16.CrossRefGoogle Scholar
Aragão, F.J.L., Vianna, G.R., Carvalheira, S.B.R.C. and Rech, E.L. (2005) Germ line genetic transformation in cotton (Gossypium hirsutum L.) by selection of transgenic meristematic cells with a herbicide molecule. Plant Science 168, 12271233.CrossRefGoogle Scholar
Ash, C., Jasny, B.R., Malakoff, D.A. and Sudgen, A.M. (2010) Feeding the future. Science 327, 797.CrossRefGoogle ScholarPubMed
Babino, A., Pritsch, O., Oppezzo, P., Du Pasquier, R., Roseto, A., Osinaga, E. and Alzari, P.M. (1997) Molecular cloning of a monoclonal anti-tumor antibody specific for the Tn antigen and expression of an active Single-Chain Fv Fragment. Hybridoma 16, 317324.CrossRefGoogle ScholarPubMed
Barrett, C.L., Kim, T.Y., Kim, H.U., Palsson, B. and Lee, S.Y. (2006) Systems biology as a foundation for genome-scale synthetic biology. Current Opinion in Biotechnology 17, 488492.CrossRefGoogle ScholarPubMed
Baulcombe, D. (2010) Reaping benefits of crop research. Science 327, 761.CrossRefGoogle ScholarPubMed
Bittencourt, D., Souto, B.M., Verza, N.C., Vinecky, F., Dittmar, K., Silva, P.I. Jr, Andrade, A.C., da Silva, F.R., Lewis, R.V. and Rech, E.L. (2007) Spidroins from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae). Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology 147, 597606.CrossRefGoogle ScholarPubMed
Bittencourt, D., Dittmar, K., Lewis, R.V. and Rech, E.L. (2010) A MaSp2-like gene found in the Amazon mygalomorph spider Avicularia juruensis. Comparative Biochemistry and Physiology, Part B: Biochemistry and Molecular Biology 155, 419426.CrossRefGoogle ScholarPubMed
Bonfim, K., Faria, J.C., Nogueira, E.O.P.L., Mendes, E.A. and Aragão, F.J.L. (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Molecular Plant Microbe Interaction 20, 717726.CrossRefGoogle ScholarPubMed
Boothe, J.G., Saponja, J.A. and Parmenter, D.L. (1997) Molecular farming in plants: oilseeds as vehicles for the production of pharmaceutical proteins. Drug Development Research 42, 172181.3.0.CO;2-N>CrossRefGoogle Scholar
Boothe, J., Nykiforuk, C., Shen, Y., Zaplachinski, S., Szarka, S., Kuhlman, P., Murray, E., Morck, D. and Moloney, M.M. (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnology Journal 8, 588606.CrossRefGoogle ScholarPubMed
Botos, I., O'Keefe, B.R., Shenoy, S.R., Cartner, L.K., Ratner, D.M., Seeberger, P.H., Boyd, M.R. and Wlodawer, A. (2002) Structures of the complexes of a potent anti-HIV protein Cyanovirin-N and high mannose oligosaccharides. Journal of Biological Chemistry 277, 34 33634 342.CrossRefGoogle ScholarPubMed
Brookes, G. and Barfoot, P. (2008) Global impact of biotech crops: socio-economic and environmental effects. AgBioForum 11, 2138.Google Scholar
Caldas, C., Coelho, V., Kalil, J., Moro, A.M., Maranhão, A.Q. and Brígido, M.M. (2003) Humanization of the anti-CD18 antibody 6.7: an unexpected effect of a framework residue in binding to antigen. Molecular Immunology 39, 941952.CrossRefGoogle ScholarPubMed
Cavazzoni, J., Volk, T., Bugbee, B. and Dougher, T. (1999) Phasic temperature and photoperiod control for soybean using a modified CROPGRO model. Life Support Biosphysical Science 6, 273278.Google ScholarPubMed
Chen, Z.L., Schuler, M.A. and Beachy, R.N. (1986) Functional analysis of regulatory elements in a plant embryo-specific gene. Proceedings of the National Academy of Sciences, USA 83, 85608564.CrossRefGoogle Scholar
Cunha, N.B., Murad, A.M., Cipriano, T.M., Araújo, A.C.G., Aragão, F.J.L., Leite, A., Vianna, G.R., McPhee, T.R., Souza, G.H.M.F., Waters, M.J. and Rech, E.L. (2010a) Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Research 20, 811826.CrossRefGoogle ScholarPubMed
Cunha, N.B., Murad, A.M., Ramos, G.L., Maranhão, A.Q., Brigido, M.M., Araújo, A.C.G., Lacorte, C., Aragão, F.J.L., Covas, D.T., Fontes, A.M., Souza, G.H.M.F., Vianna, G.R. and Rech, E.L. (2010b) Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transgenic Research 20, 841855.CrossRefGoogle ScholarPubMed
Cunha, N.B., Araújo, A.C.G., Leite, A., Murad, A.M., Vianna, G.R. and Rech, E.L. (2010c) Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds. Genetics and Molecular Research 9, 11631170.CrossRefGoogle ScholarPubMed
Daniell, H., Streatfield, S.J. and Wycoff, K. (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends in Plant Science 6, 219226.CrossRefGoogle ScholarPubMed
De Castro, L.A.B. (2011) No genes no future. Nature Bioentrepreneur. Available at http://blogs.nature.com/trade_secrets/luiz-antonio-barreto-decastro/ (accessed).Google Scholar
Endy, D. (2005) Foundations for engineering biology. Nature 438, 449453.CrossRefGoogle ScholarPubMed
Fedoroff, N.V., Battisti, D.S., Beachy, R.N., Cooper, P.J., Fischhoff, D.A., Hodges, C.N., Knauf, V.C., Lobell, D., Mazur, B.J., Molden, D., Reynolds, M.P., Ronald, P.C., Rosegrant, M.W., Sanchez, P.A., Vonshak, A. and Zhu, J.-K. (2010) Radically rethinking agriculture for the 21st century. Science 327, 833834.CrossRefGoogle Scholar
Gnjatic, S.H., Nishikawa, H., Jungbluth, A.A., Gure, A.O., Ritter, G., Jager, E., Knuth, A., Chen, Y.-T. and Old, L.J. (2003) NY-ESO-1: Review of an immunogenic tumor antigen. Advances in Cancer Research 95, 130.Google Scholar
Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., David Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. and Toulmin, C. (2010) Food security: the challenge of feeding 9 billion people. Science 327, 812817.CrossRefGoogle ScholarPubMed
Gullison, R.E., Frumhoff, P.C., Canadell, J.G., Field, C.B., Nepstad, D.C., Hayhoe, K., Avissar, R., Curran, L.M., Friedlingstein, P., Jones, C.D. and Nobre, C. (2007) Tropical forests and climate policy. Science 316, 985986.CrossRefGoogle ScholarPubMed
Imoto, Y., Yamada, T., Kitamura, K. and Kanazawa, A. (2008) Spatial and temporal control of transcription of the soybean beta-conglycinin alpha subunit gene is conferred by its proximal promoter region and accounts for the unequal distribution of the protein during embryogenesis. Genes Genetics Systems 83, 469476.CrossRefGoogle ScholarPubMed
James, C. (2010) Global status of commercialized biotech/GM crops: 2010. ISAAA Brief No. 42. Ithaca, NY, International Service for the Acquisition of Agri-biotech Applications.Google Scholar
Jolliffe, N.A., Craddock, C.P. and Frigerio, L. (2005) Pathways for protein transport to seed storage vacuoles. Biochemical Society Transactions 33, 10161018.CrossRefGoogle ScholarPubMed
Kantolic, A.G. and Slafer, G.A. (2007) Development and seed number in indeterminate soybean as affected by timing and duration of exposure to long photoperiods after flowering. Annals of Botany 99, 925933.CrossRefGoogle Scholar
Kawakatsu, T. and Takaiwa, F. (2010) Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechnology Journal 8, 939953.CrossRefGoogle ScholarPubMed
Kovach, J., Petzoldt, C., Degni, J. and Tette, J. (1992) A method to measure the environmental impact of pesticides. New York's Food and Life Sciences Bulletin, No. 139. 8 pp. NYS Agricultural Experimental Station, Cornell University, Geneva, New York. Available at http://www.nysipm.cornell.edu/publications/EIQ.html (accessed).Google Scholar
Lewis, R.V. (2006) Spider silk: ancient ideas for new biomaterials. Chemical Review 106, 37623774.CrossRefGoogle ScholarPubMed
Ma, J.K., Drake, P.M. and Christou, P. (2003) The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics 4, 794805.CrossRefGoogle ScholarPubMed
McElroy, D. (2003) Sustaining agbiotechnology through lean times. Nature Biotechnology 21, 9961002.CrossRefGoogle ScholarPubMed
McElroy, D. (2004) Valuing the product development cycle in agricultural biotechnology – what's in a name. Nature Biotechnology 22, 817822.CrossRefGoogle Scholar
Merry, F.D., Amacher, G.S., Lima, E. and Nepstad, D.C. (2003) A risky forest policy in the Amazon? Science 299, 21.CrossRefGoogle ScholarPubMed
Nagel, H., Laskawi, R., Eiffert, H. and Schlott, T. (2003) Analysis of the tumour suppressor genes, FHIT and WT-1, and the tumour rejection genes, BAGE, GAGE-1/2, HAGE, MAGE-1, and MAGE-3, in benign and malignant neoplasms of the salivary glands. Journal of Clinical Pathology: Molecular Pathology 56, 226231.Google ScholarPubMed
Nepstad, D., Schwartzman, B., Bamberger, B., Santilli, M., Ray, D., Schlesinger, P., Lefebcre, P., Alencar, A., Prinz, E., Fiske, G. and Rolla, A. (2006a) Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conservation Biology 20, 6573.CrossRefGoogle ScholarPubMed
Nepstad, D., Sticker, C.M. and Almeida, O.T. (2006b) Globalization of the Amazon soy and beef industries: opportunities for conservation. Conservation Biology 20, 15951603.CrossRefGoogle ScholarPubMed
Obembe, O.O., Popoola, J.O., Leelavathi, S. and Reddy, S.V. (2011) Advances in plant molecular farming. Biotechnology Advances 29, 210222.CrossRefGoogle ScholarPubMed
OECD/FAO (2010) The growing problem. Nature 466, 546547.CrossRefGoogle Scholar
O'Keefe, B.R., Vojdani, F., Buffa, V., Shattock, R.J., Montefiori, D.C., Bakke, J., Mirsalis, J., d'Andrea, A.-L., Hume, S.D., Bratcher, B., Saucedo, C.J., McMahon, J.B., Pogue, G.P. and Palmer, K.P. (2009) Scalable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proceedings of the National Academy of Sciences, USA 106, 60996104.CrossRefGoogle Scholar
Pennisi, E. (2010) Sowing the seeds for the ideal crop. Science 327, 802803.CrossRefGoogle ScholarPubMed
Peres, C.A. and Terborgh, J.W. (1995) Amazonian nature reserves: an analysis of the defensibility status of existing conservation units and design criteria for the future. Conservation Biology 9, 3446.CrossRefGoogle Scholar
Ratter, J.A., Bridgewater, S. and Ribeiro, J.F. (2003) Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany 60, 57109.CrossRefGoogle Scholar
Rech, E.L. (2010) Genomics and synthetic biology as a viable option to intensify sustainable use of biodiversity. Nature Precedings, Available at http://precedings.nature.com/documents/5759/version/1/files/npre20115759-1.pdf (accessed).Google Scholar
Rech, E.L., Vianna, G.R. and Aragão, F.J.L. (2008) High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants. Nature Protocols 3, 410418.CrossRefGoogle ScholarPubMed
Robić, G., Farinas, C.S., Rech, E.L., Bueno, S.M.A. and Miranda, E.A. (2006) Downstream process engineering evaluation of transgenic soybean seeds as host for recombinant protein production. Biochemical Engineering Journal 32, 712.CrossRefGoogle Scholar
Robić, G., Farinas, C.S., Rech, E.L. and Miranda, E.A. (2010) Transgenic soybean seed as protein expression system: aqueous extraction of recombinant beta-glucuronidase. Applied Biochemistry and Biotechnology 160, 11571167.CrossRefGoogle ScholarPubMed
Sachs, J., Remans, R., Smukler, S., Winowiecki, L., Andelman, S.J., Cassman, K., Castle, D., DeFries, R., Denning, G., Fanzo, J., Jackson, L.E., Leemans, R., Lehmann, J., Milder, J.C., Naeem, S., Nziguheba, G., Palm, C.A., Pingalli, P.L., Reganold, J.P., Richter, D.D., Scherr, S.J., Sircely, J., Sullivan, C., Tomich, T.P. and Sanchez, P.A. (2010) Monitoring the world's agriculture. Nature 466, 558560.CrossRefGoogle ScholarPubMed
Sathasivan, K., Haughn, G.W. and Murai, N. (1990) Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone resistant Arabidopsis thaliana var. Columbia. Nucleic Acids Research 18, 2188.CrossRefGoogle ScholarPubMed
Schwartzman, S., Moreira, A.G. and Nepstad, D.C. (2000) Rethinking tropical forest conservation: perils in parks. Conservation Biology 14, 13511357.CrossRefGoogle Scholar
Shaner, D.L., Anderson, P.C. and Stidham, M.A. (1984) Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiology 76, 534546.CrossRefGoogle ScholarPubMed
Silva, W.A. Jr, Gnjatic, S., Erika Ritter, E., Chua, R., Cohen, T., Hsu, M., Jungbluth, A.A., Altorki, N.K., Chen, Y.-T., Old, L.J., Simpson, A.J.G. and Caballero, O.L. (2007) A trophoblast-specific cell surface protein, is expressed in a range of human tumors and elicits spontaneous antibody responses. Cancer Immunity 7, 1827.Google Scholar
Soares-Filho, B.S., Nepstad, D.C., Curran, L.M., Cerqueira, G.C., Garcia, R.A., Ramos, C.A., Voll, E., McDonald, A., Lefebvre, P. and Schlesinger, P. (2006) Modelling conservation in the Amazon basin. Nature 440, 520523.CrossRefGoogle ScholarPubMed
Spök, A., Twyman, R.M., Fischer, R., Ma, J.K.C. and Sparrow, A.C. (2008) Evolution of a regulatory framework for pharmaceuticals derived from genetically modified plants. Trends in Biotechnology 26, 506517.CrossRefGoogle ScholarPubMed
Stoger, E., Ma, J.K., Fischer, R. and Christou, P. (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Current Opinion in Biotechnology 16, 167173.CrossRefGoogle ScholarPubMed
Streatfield, S.J. (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnology Journal 5, 215.CrossRefGoogle ScholarPubMed
Teulé, F., Cooper, A.R., Furin, W.A., Bittencourt, D., Rech, E.L., Brooks, A. and Lewis, R.V. (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nature Protocols 4, 341355.CrossRefGoogle ScholarPubMed
Tollefson, J.T. (2010) The global farm. Nature 466, 554556.CrossRefGoogle ScholarPubMed
Van den Eynde, B., Peeters, O., De Backer, O., Gaugler, B., Lucas, S. and Boon, T. (1995) A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. Journal of Experimental Medicine 182, 689698.CrossRefGoogle ScholarPubMed
Weber, W. and Fusseneger, M. (2009) The impact of synthetic biology on drug discovery. Drug Discovery Today 14, 956963.CrossRefGoogle ScholarPubMed
Xiong, C., O'Keefe, B.R., Botos, I., Wlodawer, A. and McMahon, J.B. (2006) Overexpression and purification of scytovirin, a potent, novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Protein Expression and Purification 46, 233239.CrossRefGoogle ScholarPubMed