Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T00:54:06.441Z Has data issue: false hasContentIssue false

Priming effects on seed germination of two perennial herb species in a disturbed lava field in central Mexico

Published online by Cambridge University Press:  25 January 2018

Jafet Belmont
Affiliation:
Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria 04510, Coyoacán, CdMx, Mexico
María E. Sánchez-Coronado
Affiliation:
Departamento de Ecología Fisiológica, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria 04510, Coyoacán, CdMx, Mexico
Helia R. Osuna-Fernández
Affiliation:
Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria 04510, Coyoacán, CdMx, Mexico
Alma Orozco-Segovia
Affiliation:
Departamento de Ecología Fisiológica, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria 04510, Coyoacán, CdMx, Mexico
Irene Pisanty*
Affiliation:
Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-275, Ciudad Universitaria 04510, Coyoacán, CdMx, Mexico
*
Author for correspondence: Irene Pisanty, Email: [email protected]

Abstract

Priming has proved to enhance seed germination, but most of the research dealing with this topic has been carried out with cultivated species. The potential applications that this process has on wild species, which can be useful for restoration, are usually overlooked. This study analyses the germination response after natural priming and hydropriming of Penstemon roseus and Castilleja tenuiflora, two perennial herbs growing in a protected area known as ‘Parque Ecológico de la Ciudad de México’. Photoblastism was evaluated for both species. Seeds were exposed to a hydration/dehydration cycle and then placed in germination chambers to determine responses to hydropriming. To identify the effects of natural priming, seeds were buried in natural conditions and then recovered every two months and placed in germination chambers. Germination percentages and rates were then quantified. Both species proved to have permeable seed coats. Penstemon roseus seeds are positive photoblastic whereas C. tenuiflora seeds are indifferent to light. Priming methods increased C. tenuiflora germination rates, but they did not affect germination capacity. For P. roseus, priming methods did not improve germination rates, and germination capacity of recovered seeds decreased after the rainy season, suggesting that P. roseus forms a short-term, transient, seed bank. The germination strategies of these two species allow them to occupy suitable microsites for germination and establishment. These responses can be helpful in developing restoration programmes based on the accelerated establishment of native and characteristic successional species.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badek, B., van Duijn, B. and Grzesik, M. (2006) Effects of water supply methods and incubation during priming on germination of tomato (Lycopersicon esculentum Mill.) seeds. Vegetable Crops Research Bulletin 65, 1728.Google Scholar
Bewley, J. and Black, M. (1994) Seeds: Physiology of Development and Germination. New York: Springer Science.Google Scholar
Bray, C.M. (1995) Biochemical processes during the osmopriming of seeds, pp. 767789 in Kigel, J. and Galili, G. (eds), Seed Development and Germination. New York: Marcel Dekker Inc. Google Scholar
Cano-Santana, Z., Pisanty, I., Segura, S., Mendoza, P., León, R., Soberón, J., Tovar, E., Martínez-Romero, E., Ruiz-Amaro, C. and Martínez-Ballesté, A. (2006) Ecología y conservación de las áreas naturales del sur de la Ciudad de México, pp. 203227 in Oyama, J. and Castillo, A. (eds), Manejo, conservación y restauración de recursos naturales en México. Mexico, Siglo XXI.Google Scholar
de Mello, A.M., Streck, N.A., Blankenship, E.E. and Paparozzi, E.T. (2009) Gibberellic acid promotes seed germination in Penstemon digitalis cv. husker red. HortScience 44, 870873.Google Scholar
Douglas, D (1973) Root parasitism in Castilleja rhexifolia Rydb. Arctic and Alpine Research 5, 145147.Google Scholar
El-Kassaby, Y.A., Moss, I., Kolotelo, D. and Stoehr, M. (2008) Seed germination: mathematical representation and parameters extraction. Forest Science 54, 220227.Google Scholar
González-Zertuche, L., Orozco-Segovia, A. and Vázquez-Yanes, C. (2000) El ambiente de la semilla en el suelo: su efecto en la germinación y en la sobrevivencia de la plántula. Boletín de la Sociedad Botánica de México 65, 7381.Google Scholar
González-Zertuche, L., Orozco-Segovia, A., Baskin, C. and Baskin, J.M. (2002) Effects of priming on germination of Buddleja cordata (Loganiaceae) seeds and possible ecological significance. Seed Science and Technology 30, 535548.Google Scholar
González-Zertuche, L., Vázquez-Yanes, C., Gamboa, A., Sánchez-Coronado, M.E., Aguilera, P. and Orozco-Segovia, A. (2001) Natural conditioning of Wigandia urens seeds during burial: effects on germination, growth and protein expression. Seed Science Research 11, 2734.CrossRefGoogle Scholar
Halmer, P. (2004) Methods to improve seed performance in the field, pp. 125156 in Benech Arnold, R.L. and Sánchez, R.A. (eds), Handbook of Seed Physiology: Applications to Agriculture. New York: The Haworth Reference Press.Google Scholar
Heckard, L.R. (1962) Root parasitism in Castilleja . Botanical Gazette 124, 2129.Google Scholar
Hsiao, A.I. (1979) The effect of sodium hypochlorite and gibberellic acid on seed dormancy and germination of wild oats (Avena fatua). Canadian Journal of Botany 57, 17291734.Google Scholar
López-Escamilla, A.L., Olguín-Santos, L.P., Márquez-Guzmán, J., Chávez, V.M. and Bye, R. (2000) Adventitious bud formation from mature embryos of Picea chihuahuana Martínez, an endangered Mexican spruce tree. Annals of Botany 86, 921927.Google Scholar
Maestre, F.T., Cortina, J., Bautista, S., Bellot, J. and Vallejo, R. (2003) Small-scale environmental heterogeneity and spatiotemporal dynamics of seedling establishment in a semi- arid degraded ecosystem. Ecosystems 6, 630643.Google Scholar
Martínez-Orea, Y., Castillo-Argüero, S., Romero-Romero, M.A., Cruz-Durán, R., Reyes-Ronquillo, I.G., Pizaro-Hernández, C., Santibáñez-Andrade, G. and Castro-Gutiérrez, C. (2012) Diásporas de la cuenca del río Magdalena. México. Facultad de Ciencias, Universidad Nacional Autónoma de México.Google Scholar
Martínez-Villegas, J.A., Orozco-Segovia, A., Sánchez-Coronado, M.E. and Pisanty, I. (2012) Germination of Sedum oxypetalum (Crassulaceae) in a primary lava-field shrubland. Plant Ecology 213, 871881.Google Scholar
McKinney, M.L. (2002) Urbanization, biodiversity, and conservation. BioScience 52, 883890.Google Scholar
Mendoza-Hernández, P.E., Orozco-Segovia., A., Valverde, T. and Martínez-Ramos, M. (2013) Vegetation recovery and plant facilitation in a human-disturbed lava field in a megacity: searching tools for ecosystem restoration. Plant Ecology 214, 153167.Google Scholar
Meyer, S.E., Kitchen, S.G. and Carlson, S.L. (1995) Seed germination timing patterns in intermountain Penstemon (Scrophulariaceae). American Journal of Botany 82, 377389.Google Scholar
Montes-Hernández, E., Sandoval-Zapotitla, E., Bermúndez-Torres, K. and Trejo-Tapia, G. (2015). Potential hosts of Castilleja tenuiflora (Orobanchaceae) and characterization of its haustoria. Funtional Ecology of Plants 214, 1116.CrossRefGoogle Scholar
Ogle, D. and Peterson, J.S. (2013) Rocky mountain Penstemon plant guide. Natural Resources Conservation Service USDA.Google Scholar
Pedrero-López, L.V., Rosete-Rodríguez, A., Sánchez-Coronado, M.E., Mendoza-Hernández, P.E. and Orozco-Segovia, A. (2016) Effects of hydropriming treatments on the invigoration of aged Dodonaea viscosa seeds and water-holding polymer on the improvement of seedling growth in a lava field. Restoration Ecology 24, 6170.Google Scholar
R Core Team (2016) R: A Language and Environment for Statistical Computing . R Foundation for Statistical Computing Vienna, Austria.Google Scholar
Richter, D.D. and Switzer, G.L. (1982) A technique for determining quantitative expressions of dormancy in seeds. Annals of Botany 50, 459463.Google Scholar
Ritz, C. and Streibig, J.C. (2008) Nonlinear Regression with R. New York: Springer.Google Scholar
Rzedowski, G.C. and Rzedowski, J (2005) Flora Fanerogámica del Valle de México. Instituto de Ecología, A.C., CONABIO, México.Google Scholar
Sánchez-Coronado, M.E., Olvera, C., Márquez-Guzmán, J., Macías-Rubalcava, M.L., Orozco, S., Anaya, A.L. and Orozco-Segovia, A. (2015) Complex dormancy in the seeds of Hypericum philonotis . Functional Ecology of Plants 213, 3239.CrossRefGoogle Scholar
Schopfer, P. and Plachy, C. (1984) Control of seed germination by abscisic acid II. Effect on embryo water uptake in Brassica napus . Plant Physiology 76, 155160.Google Scholar
Silvertown, J., Francisco-Ortega, J. and Carine, M. (2005) The monophyly of island radiations: an evaluation of niche pre-emption and some alternative explanations. Journal of Ecology 93, 653657.Google Scholar
Soberón, J., de la Cruz, M. and Jiménez, G. (1991) Ecología hipotética de la reserva del Pedregal de San Angel. Ciencia y Desarrollo 17, 2538.Google Scholar
Thanos, C.A, Kadis, C.C. and Skarou, F. (1995) Ecophysiology of germination in the aromatic plants thyme, savory and oregano (Labiatae). Seed Science Research 5, 161170.CrossRefGoogle Scholar
Vázquez-Yanes, C. and Orozco-Segovia, A. (1990) Ecological significance of light controlled seed germination in two contrasting tropical habitats. Oecologia 83, 171175.Google Scholar
Vitousek, P. (2006) Ecosystem science and human–environment interactions in the Hawaiian archipelago. Journal of Ecology 94, 510521.Google Scholar
Wesson, G. and Wareing, P.F. (1969) The induction of light sensitivity in weed seeds by burial. Journal of Experimental Botany 20, 414425.Google Scholar