Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T10:42:12.622Z Has data issue: false hasContentIssue false

Longevity and germination ecology of seeds of endemic Cactaceae species from high-altitude sites in south-eastern Brazil

Published online by Cambridge University Press:  04 November 2011

Ana Loureiro Cheib
Affiliation:
Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais (UFMG), CP 486, CEP 31270-970, Belo Horizonte, MG, Brazil
Queila Souza Garcia*
Affiliation:
Laboratório de Fisiologia Vegetal, Departamento de Botânica, Universidade Federal de Minas Gerais (UFMG), CP 486, CEP 31270-970, Belo Horizonte, MG, Brazil
*
*Correspondence Email: [email protected]

Abstract

The influence of light and temperature on germination behaviour and the longevity of seeds were evaluated in four taxa of the genus Arthrocereus (Cactaceae). Germination experiments were conducted at six constant temperatures with a 12-h photoperiod and in continuous darkness. For in situ storage tests, the seeds were buried in the soil where the species naturally occur, and germination experiments were performed for 14 months. Seeds were also stored dry at room temperature in the laboratory for 12 months. The results indicated that, in spite of the variations between the four taxa studied, there is a consistent pattern in their germination behaviour. The seeds are small, with an absolute requirement of light for germination. In the presence of light, we obtained high germinability at temperatures between 20 and 30°C and low germination percentages at 10, 15 and 35°C. This behaviour may represent an adaptive mechanism during seasons when environmental conditions in open rocky fields are not favourable for seedling survival. In general, germination was relatively slow, which would favour establishment during the rainy season. Dry storage did not significantly alter seed germination behaviour, and buried seeds, likewise, remained viable and retained high germination percentages. We can therefore infer that the seeds of the species studied here are able to form persistent soil seed-banks. All studied species are threatened with extinction, so their ability to form soil seed-banks, together with the possibility of ex situ seed preservation, will possibly give support for future conservation efforts.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abreu, M.E.P. and Garcia, Q.S. (2005) Efeito da luz e da temperatura na germinação das sementes de quatro espécies de Xyris L. (Xyridaceae) ocorrentes na Serra do Cipó, MG, Brasil. Acta Botanica Brasilica 19, 149154.CrossRefGoogle Scholar
Aragona, M. and Setz, E.Z.P. (2001) Diet of the maned wolf, Chrysocyon brachyurus (Mammalian: Canidae), during wet and dry seasons at Ibitipoca State Park, Brazil. Journal of Zoology 254, 131136.Google Scholar
Baskin, C.C. and Baskin, J.M. (1988) Germination ecophysiology of herbaceous plant species in a temperate region. American Journal of Botany 7, 286305.CrossRefGoogle Scholar
Bekker, R.M., Bakker, J.P., Grandin, U., Kalamees, R., Milberg, P., Poschlod, P., Thompson, K. and Willems, J.H. (1998) Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology 12, 834842.Google Scholar
Benites, V.M., Caiafa, A.N., Mendonça, E.S., Schaeffer, C.E.G.R. and Ker, J.C. (2003) Solos e vegetação nos Complexos Rupestres de Altitude da Mantiqueira e do Espinhaço. Revista Floresta e Ambiente 10, 7685.Google Scholar
Benites, V.C., Schaefer, C.E.G.R., Simas, F.N.B. and Santos, H.G. (2007) Soils associated with rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Revista Brasileira de Botânica 30, 569577.Google Scholar
Benítez-Rodríguez, J.L., Orozco-Segovia, A. and Rojas-Aréchiga, M. (2004) Light effect on seed germination of four Mammillaria species from the Tehuacán-Cuicatlán Valley, Central Mexico. The Southwestern Naturalist 49, 1117.2.0.CO;2>CrossRefGoogle Scholar
Bowers, J.E. (2000) Does Ferocactus wislizeni (Cactaceae) have a between-year seed bank? Journal of Arid Environments 45, 197205.CrossRefGoogle Scholar
Bowers, J.E. (2005) New evidence for persistent or transient seed banks in three Sonoran Desert cacti. The Southwestern Naturalist 50, 482487.Google Scholar
Buhk, C. and Hensen, I. (2008) Seed longevity of eight species common during early postfire regeneration in south-eastern Spain: a 3-year burial experiment. Plant Species Biology 23, 1824.CrossRefGoogle Scholar
COPAM (Conselho Estadual de Política Ambiental) (2008) Deliberação Normativa COPAM n° 367, de 15 de dezembro de 2008. Lista das Espécies Ameaçadas de Extinção da Flora do Estado de Minas Gerais.Google Scholar
Daly, D.C. and Mitchell, J.D. (2000) Lowland vegetation of tropical South America – an overview. pp. 391454 in Lentz, D. (Ed.) Imperfect balance: Landscape transformations in the pre-Columbian Americas. New York, Columbia University Press.CrossRefGoogle Scholar
Daws, M.I., Burslem, D.F.R.P., Crabtree, L.M., Kirkman, P., Mullins, C.E. and Dalling, J.W. (2002) Differences in seed germination responses may promote coexistence of four sympatric Piper species. Functional Ecology 16, 258267.Google Scholar
Degreef, J., Rocha, O.J., Vanderborght, T. and Baudoin, J.P. (2002) Soil seed bank and seed dormancy in wild populations of lima bean (Fabaceae): considerations for in situ and ex situ conservation. American Journal of Botany 89, 16441650.Google Scholar
de la Barrera, E. and Nobel, P.S. (2003) Physiological ecology of seed germination for the columnar cactus Stenocereus queretaroensis. Journal of Arid Environments 53, 297306.CrossRefGoogle Scholar
de Viana, M.L. (1999) Seed production and seed bank of Trichocereus pasacana (Cactaceae) in northwestern Argentina. Tropical Ecology 40, 7984.Google Scholar
Drummond, G.M., Martins, C.S., Machado, A.B.M., Sebaio, F.A. and Antonini, Y. (2005) Biodiversidade em Minas Gerais: um atlas para sua conservação (2nd edition). Belo Horizonte, Fundação Biodiversitas.Google Scholar
Flores, J., Jurado, E. and Arredondo, A. (2006) Effect of light on germination of seeds of Cactaceae from the Chihuahuan Desert, México. Seed Science Research 16, 149155.CrossRefGoogle Scholar
Flores, J., Jurado, E., Chapa-Vargas, L., Ceroni-Stuva, A., Dávila-Aranda, P., Galíndez, G., Gurvich, D., León-Lobos, P., Ortega-Baes, P., Seal, C.E., Ulian, T. and Pritchard, H.W. (2011) Positive photoblastism in cacti seeds and its relationship with some plant traits. Journal of Experimental Botany 71, 7988.CrossRefGoogle Scholar
Galvão, M.V. and Nimer, E. (1965) Clima. pp. 91139 in Instituto Brasileiro de Geografia e Estatística (IBGE) (Ed.) Geografia do Brasil – Grande Região Leste, 5. Rio de Janeiro, IBGE.Google Scholar
Garcia, L.C., Barros, F.V. and Lemos Filho, J.P. (2006) Comportamento germinativo de duas espécies de canga ferrífera: Baccharis retusa DC. (Asteraceae) e Tibouchina multiflora Cogn. (Melastomataceae). Acta Botanica Brasilica 20, 443448.CrossRefGoogle Scholar
Garcia, Q.S., Jacobi, C.M. and Ribeiro, B.A. (2007) Resposta germinativa de duas espécies de Vellozia (Velloziaceae) dos campos rupestres de Minas Gerais, Brasil. Acta Botanica Brasilica 21, 451456.Google Scholar
García-Fayos, P. and Verdú, M. (1998) Soil seed bank, factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L. Acta Oecologica 19, 357366.CrossRefGoogle Scholar
Garwood, N.C. (1989) Tropical soil seed banks: a review. pp. 149209 in Leck, M.A.; Parker, V.T.; Simpson, R.L. (Eds) Ecology of soil seed banks. London, Academic Press.CrossRefGoogle Scholar
Giulietti, A.M., Pirani, J.R. and Harley, R.M. (1997) Espinhaço Range region – Eastern Brazil. pp. 397404 in Davis, S.D., Heywood, V.H., Herrera-MacBryde, O., Villa-Lobos, J. and Hamilton, A.C. (Eds) Centres of plant diversity: A guide and strategy for their conservation. Vol. 3. The Americas. Cambridge, World Wide Fund for Nature/International Union for Conservation of Nature (WWF/IUCN).Google Scholar
Godínez-Álvarez, H., Valverde, T. and Ortega-Baes, P. (2003) Demographic trends in the Cactaceae. The Botanical Review 69, 173203.CrossRefGoogle Scholar
Hill, N.M. and Vander Kloet, S.P. (2005) Longevity of experimentally buried seed in Vaccinium: relationship to climate, reproductive factors and natural seed banks. Journal of Ecology 93, 11671176.Google Scholar
Hölzel, N. and Otte, A. (2004) Assessing soil seed bank persistence in flood-meadows: the search for reliable traits. Journal of Vegetation Science 15, 93100.CrossRefGoogle Scholar
INMET (Instituto Nacional de Meteorologia) (2008) Normais Climatológicas 1961 a 1990. Available at website http://www.inmet.gov.br/html/clima/mapas/?mapa = tmaxandmes = dez (accessed 13 April 2010).Google Scholar
IUCN (International Union for Conservation of Nature) (2001) IUCN Red List categories and criteria: Version 3.1. IUCN Species Survival Commission. Gland, Switzerland and Cambridge, UK, International Union for Conservation of Nature.Google Scholar
Jurado, E. and Flores, J. (2005) Is seed dormancy under environmental control or bound to plant traits? Journal of Vegetation Science 16, 559564.Google Scholar
Köppen, W. (1923) De klimate der Erde. Berlin, Bornträger.Google Scholar
Llorens, L., Pons, M., Gil, L. and Boira, H. (2008) Seasonality of seed production and germination trends of Fumana ericoides (Cistaceae) in the west semiarid Mediterranean region. Journal of Arid Environments 72, 121126.Google Scholar
Lunt, I.D. (1995) Seed longevity of six native forbs in a closed Themeda triandra grassland. Australian Journal of Botany 43, 439449.Google Scholar
Marone, L., Rossi, B.E. and Horno, M.E. (1998) Timing and spatial patterning of seed dispersal and redistribution in a South American warm desert. Plant Ecology 137, 143150.Google Scholar
Meiado, M.V., Correa de Albuquerque, L.S., Rocha, E.A., Rojas-Aréchiga, M. and Leal, I.R. (2010) Seed germination responses of Cereus jamacaru DC ssp. jamacaru (Cactaceae) to environmental factors. Plant Species Biology 25, 120128.Google Scholar
Meyer, S.E. and Kitchen, S.G. (1994) Life history variation in blue flax (Linum perenne: Linaceae): seed germination phenology. American Journal of Botany 81, 528535.Google Scholar
Milberg, P., Andersson, L. and Thompson, K. (2000) Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Science Research 10, 99104.Google Scholar
Moles, A.T., Warton, D.I. and Westoby, M. (2003) Seed size and survival in the soil in arid Australia. Austral Ecology 28, 575585.Google Scholar
Montiel, S. and Montaña, C. (2003) Seed bank dynamics of the desert cactus Opuntia rastrera in two habitats from the Chihuahuan Desert. Plant Ecology 166, 241248.Google Scholar
Oliveira, P.G. and Garcia, Q.S. (2005) Efeitos da luz e da temperatura na germinação de sementes de Syngonanthus elegantulus Ruhland, S. elegans (Bong.) Ruhland e S. venustus Silveira (Eriocaulaceae). Acta Botanica Brasilica 19, 639645.CrossRefGoogle Scholar
Oliveira, P.G. and Garcia, Q.S. (2011) Germination characteristics of Syngonanthus seeds (Eriocaulaceae) in campos rupestres vegetation in southeastern Brazil. Seed Science Research 21, 3945.Google Scholar
Ortega-Baes, P. and Rojas-Aréchiga, M. (2007) Seed germination of Trichocereus terscheckii (Cactaceae): light, temperature and gibberellic acid effects. Journal of Arid Environments 69, 169176.Google Scholar
Ortega-Baes, P., Aparício, M., Galíndez, G., del Fueyo, P., Sühring, S. and Rojas-Aréchiga, M. (2010) Are cactus life forms related to germination responses to light? A test using Echinopsis species. Acta Oecologica 36, 339342.Google Scholar
Parker, V.T., Simpson, R.L. and Leck, M.A. (1989) Pattern and processing the dynamics of seed banks. pp. 367384. Leck, M.A.; Parker, V.T.; Simpson, R.L. (Eds) Ecology of soil seed banks. London, Academic Press.Google Scholar
Pons, T.L. (2000) Seed responses to light. pp. 237260 in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities (2nd edition). Wallingford, UK, CAB International.Google Scholar
Probert, R.J. (1992) The role of temperature in germination ecophysiology. pp. 285325 in Fenner, M. (Ed.) Seeds: The ecology of regeneration in plant communities (2nd edition). Wallingford, UK, CAB International.Google Scholar
Ranieri, B.D., Pezzini, F.F., Garcia, Q.S., Chautems, A. and França, M.G.C. (2011) Testing the regeneration niche hypothesis with Gesneriaceae (tribe Sinningiae) in Brazil: Implications for the conservation of rare species. Austral Ecology. doi: 10.1111/j.1442-9993.2011.02254.x.Google Scholar
Rojas-Aréchiga, M. (2008) Efecto del ácido giberélico en la germinación de cuatro especies del género Mammillaria del Valle de Tehuacán-Cuicatlán, México. Boletín de la Sociedad Latinoamericana y del Caribe de Cactáceas y otras Suculentas 5, 2123.Google Scholar
Rojas-Aréchiga, M. and Batis, A. (2001) ¿Las semillas de cactáceas forman bancos en el suelo? Cactaceas y Suculentas Mexicanas 46, 7682.Google Scholar
Rojas-Aréchiga, M. and Vázquez-Yanes, C. (2000) Cactus seed germination: a review. Journal of Arid Environments 44, 85104.CrossRefGoogle Scholar
Rojas-Aréchiga, M., Golubov, J., Romero, O. and Mandujano, M.C. (2008) Efecto de la luz y la temperatura en la germinación de dos especies de cactáceas en CITES I. Cactaceas y Suculentas Mexicanas 53, 5157.Google Scholar
Silveira, F.A.O., Negreiros, D. and Fernandes, G.W. (2004) Influência da luz e da temperatura na germinação de sementes de Marcetia taxifolia (A. St.-Hil.) DC. (Melastomataceae). Acta Botanica Brasilica 18, 847851.CrossRefGoogle Scholar
Stöcklin, J. and Fischer, M. (1999) Plants with longer-lived seeds have lower extinction rates in grassland communities 1950–1980. Oecologia 120, 539543.Google Scholar
Stricker, D. (2008) BrightStat.com: Free statistics online. Computer Methods and Programs in Biomedicine 92, 135143.Google Scholar
Taylor, N. and Zappi, D. (2004) Cacti of eastern Brazil. London, The Royal Botanic Gardens, Kew.Google Scholar
Thompson, K. (1993) Persistence in soil. pp. 199202 in Hendry, G.A.F.; Grime, J.P. (Eds) Methods in comparative plant ecology: A laboratory manual. London, Chapman & Hall.Google Scholar
Thompson, K., Band, S.R. and Hodgson, J.G. (1993) Seed size and shape predict persistence in soil. Functional Ecology 7, 236241.Google Scholar
van Mourik, T.A., Stomph, T.J. and Murdoch, A.J. (2005) Why high seed densities within buried mesh bags may overestimate depletion rates of soil seed banks. Journal of Applied Ecology 42, 299305.CrossRefGoogle Scholar
Vázquez-Yanes, C. and Rojas-Aréchiga, M. (1996) Ex situ conservation of tropical rain forest seed: problems and perspectives. Interciencia 21, 293298.Google Scholar
Venable, D.L. and Lawlor, L. (1980) Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia 46, 272282.CrossRefGoogle ScholarPubMed
Zappi, D.C. and Taylor, N.P. (2003) Flora de Grão-Mogol, Minas Gerais: Cactaceae. Boletim de Botânica da Universidade de São Paulo 21, 147154.Google Scholar