Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T17:26:56.911Z Has data issue: false hasContentIssue false

Habitat-correlated seed germination and morphology in populations of Phillyrea angustifolia L. (Oleaceae)

Published online by Cambridge University Press:  14 February 2017

Sara Mira
Affiliation:
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
Alberto Arnal
Affiliation:
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
Félix Pérez-García*
Affiliation:
Departamento de Biotecnología-Biología Vegetal, Escuela Técnica de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
*
*Correspondence Email: [email protected]

Abstract

The broad aim of this work was to study intraspecific variation of seed germination in Phillyrea angustifolia L. (Oleaceae), a species with a hard (water-permeable) endocarp. Germination of seeds from six different wild populations was correlated with traits related either to seed morphology or to environmental parameters. Germination of naked seeds (seeds without endocarp) at the optimum germination conditions was similar among populations and individuals, but great differences could be detected regarding the germination of seeds with endocarp both at inter- and intra-populational levels. Differences among populations could be related to climatic parameters and to morphometric variables of seeds with endocarp. A higher germination was associated with populations growing in habitats with more severe summer (higher temperature, lower precipitation and a longer drought period) and producing elongated seeds (lower Feret ratio and roundness). Moreover, seeds from eight different individuals within a population were tested independently, and great differences regarding the germination of seeds with endocarp could be detected among individuals. Our results suggest that the morphological variation found in P. angustifolia endocarp is both under strong maternal genetic control as well as influenced by environmental factors, as indicated by the high variability among individuals within one population and the significant correlation between climate variables and seed germination among populations. Finally, it is emphasized that standardization of plant propagation protocols should take into account the degree of intraspecific variation of Mediterranean species.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrés, C. (2011) Phillyrea L. In Castroviejo, S., Aedo, C., Cirujano, S., Laínz, M., Montserrat, P., Morales, R., Muñoz, F., Navarro, C., Paiva, J. and Soriano, C. (eds), Flora Iberica, vol. 11, pp. 139143. Madrid, Spain: Real Jardín Botánico de Madrid, CSIC.Google Scholar
Bacchetta, G., Bueno, A., Sánchez, G., Fenu, G., Jiménez-Alfaro, B., Mattana, E., Piotto, B. and Virevaire, M. (2008) Conservación ex situ de plantas silvestres [Ex situ conservation of wild plants]. Asturias, Spain: Anexo Digital I, Principado de Asturias/La Caixa.Google Scholar
Baskin, J.M. and Baskin, C.C. (2004) A classification system for seed dormancy. Seed Science Research 14, 116.Google Scholar
Baskin, C.C. and Baskin, J.M. (2014) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination (2nd edition). New York, USA: Academic Press.Google Scholar
Bewley, J.D. and Black, M. (1994) Seeds: Physiology of Development and Germination. New York, USA: Plenum Press.Google Scholar
Catalán, G. (1991) Phillyrea. In Catalán, G. (ed), Semillas de árboles y arbustos forestales [Forest tree and shrub seeds], pp. 265266. Madrid, Spain: Instituto Nacional para la Conservación de la Naturaleza.Google Scholar
Chaves, M.M., Pereira, J.S., Maroco, J., Rodrigues, M.L., Ricardo, C.P.P., Osorio, M.L., Carvalho, I., Faria, T. and Pinheiro, C. (2002) How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany 89, 907916.Google Scholar
Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, W.T., Laprise, R., Magaña Rueda, V., Mearns, L., Menéndez, C.G., Räisänen, J., Rinke, A., Sarr, A. and Whetton, P. (2007) Regional climate projections. In Solomon, S. et al. (eds), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.Google Scholar
Cochrane, A. (2016) Can sensitivity to temperature during germination help predict global warming vulnerability? Seed Science Research 26, 1429.Google Scholar
Cochrane, A., Hoyle, G L., Yates, C.J., Wood, J. and Nicotra, A.B. (2014) Predicting the impact of increasing temperatures on seed germination among populations of Western Australian Banksia (Proteaceae). Seed Science Research 24, 195205.Google Scholar
Copete, E., Herranz, J.M., Copete, M.A. and Ferrandis, P. (2014) Interpopulation variability on embryo growth, seed dormancy break, and germination in the endangered Iberian daffodil Narcissus eugeniae (Amaryllidaceae). Plant Species Biology 29, 7284.Google Scholar
Cruz, A., Pérez, B., Velasco, A. and Moreno, J. (2003) Variability in seed germination at the interpopulation, intrapopulation and intraindividual levels of the shrub Erica australis in response to fire-related cues. Plant Ecology 169, 93103.Google Scholar
De Marco, A., Gentile, A.E., Arena, C. and De Santo, A.V. (2005) Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy. Internation Journal of Wildland Fire 14, 365377.Google Scholar
European Native Seed Conservation Network (ENSCONET) (2009) Seed Collecting Manual for Wild Species. Kew, UK: Royal Botanic Gardens; Madrid, Spain: Universidad Politécnica de Madrid.Google Scholar
García-Fayos, P., Gulias, J., Martínez, J., Marzo, A., Melero, J.P. and Traveset, A. (2001) Bases ecológicas para la recolección, almacenamiento y germinación de semillas de especies de uso forestal de la Comunidad Valenciana [Ecological basis for forest tree seed collection, storage and germination of the Valencian Community]. Comunidad Valenciana, Spain: IMEDEA, Banc de Llavors Forestals.Google Scholar
Grande, D., Mancilla-Leyton, J.M., Delgado-Pertinez, M. and Martin-Vicente, A. (2013) Endozoochorus seed dispersal by goats: recovery, germinability and emergence of five Mediterranean shrub species. Spanish Journal of Agricultural Research 11, 347355.Google Scholar
Hernández-Verdugo, S., Oyama, K. and Vázquez-Yanes, C. (2001) Differentiation in seed germination among populations of Capsicum annuum along a latitudinal gradient in Mexico. Plant Ecology 155, 245257.Google Scholar
Herranz, J.M., Ferrandis, P., Copete, M.A., Duro, E.H. and Zalacain, A. (2006) Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecology 184, 259272.Google Scholar
Herrera, C.M., Jordano, P., Lopezsoria, L. and Amat, J.A. (1994) Recruitment of a mast-fruiting, bird-dispersed tree-bridging frugivore activity and seedling establishment. Ecological Monographs 64, 315344.Google Scholar
Hudson, A.R., Ayre, D.J. and Ooi, M.K. (2015) Physical dormancy in a changing climate. Seed Science Research 25, 116.Google Scholar
IBM Corporation (2013) IBM SPSS Statistics for Windows, version 22.0. Armonk, New York, USA: IBM Corporation.Google Scholar
Intergovernmental Panel on Climate Change (IPCC) (2014) Summary for policymakers. In Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R. and White, L.L. (eds), Climate Change 2014: Impacts, Adaptation and Vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the 5th assessment report of the Intergovernmental Panel on Climate change. Cambridge, UK: Cambridge University Press.Google Scholar
Fenner, M. (1992) Seeds: The Ecology of Regeneration in Plant Communities. Wallingford, UK: CABI Publishing.Google Scholar
Fernández-Pascual, E. and Jiménez-Alfaro, B. (2014) Phenotypic plasticity in seed germination relates differentially to overwintering and flowering temperatures. Seed Science Research 24, 273280.Google Scholar
Kigel, J. (1995) Seed germination in arid and semiarid regions. In Kigel, J. and Galili, G. (eds), Seed Development and Germination, pp. 645699. New York, USA: Marcel Dekker.Google Scholar
Lacerda, D.R., Filho, J.P.L., Goulart, M.F., Ribeiro, R.A. and Lovato, M.B. (2004) Seed-dormancy variation in natural populations of two tropical leguminous tree species: Senna multijuga (Caesalpinoideae) and Plathymenia reticulata (Mimosoideae). Seed Science Research 14, 127135.Google Scholar
Lazar, S.L., Mira, S., Pamfil, D. and Martínez-Laborde, J.B. (2014) Germination and electrical conductivity tests on artificially aged seed lots of 2 wall-rocket species. Turkish Journal of Agriculture and Forestry 38, 857864.Google Scholar
Lloret, F., Penuelas, J. and Ogaya, R. (2004) Establishment of co-existing Mediterranean tree species under a varying soil moisture regime. Journal of Vegetation Science 15, 237244.Google Scholar
Manso, R., Pukkala, T., Pardos, M., Miina, J. and Calama, R. (2014) Modelling Pinus pinea forest management to attain natural regeneration under present and future climatic scenarios. Canadian Journal of Forest Research 44, 250262.Google Scholar
Mariotti, A., Zeng, N., Yoon, J.-H., Artale, V., Navarra, A., Alpert, P. and Li, L.Z.X. (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environmental Research Letters 3, 4.CrossRefGoogle Scholar
Martínez-Fernández, V., Martínez-García, F. and Pérez-García, F. (2014) Census, reproductive biology, and germination of Astragalus gines-lopezii (Fabaceae), a narrow and endangered endemic species of SW Spain. Turkish Journal of Botany 38, 686695.CrossRefGoogle Scholar
Martínez-García, F., Guerrero-García, S. and Pérez-García, F. (2012) Evaluation of reproductive success and conservation strategies for Senecio coincyi (Asteraceae), a narrow and threatened species. Australian Journal of Botany 60, 517525.Google Scholar
Meglen, R.R. (1992) Examining large databases: a chemometric approach using principal component analysis. Marine Chemistry 39, 217237.Google Scholar
Mira, S., Arnal, A. and Pérez-García, F. (2016) Seed germination of Phillyrea angustifolia L., a species with difficult propagation. Forest Systems (in press).Google Scholar
Mira, S., Estrelles, E. and González-Benito, M.E. (2015a) Effect of water content and temperature on seed longevity of seven Brassicaceae species after 5 years storage. Plant Biology 17, 153162.Google Scholar
Mira, S., Estrelles, E., González-Benito, M.E. and Corbineau, F. (2011a) Biochemical changes induced in seeds of Brassicaceae wild species during ageing. Acta Physiologiae Plantarum 33, 18031809.Google Scholar
Mira, S., González-Benito, M.E., Ibars, A.M. and Estrelles, E. (2011b) Dormancy release and seed ageing in the endangered species Silene diclinis . Biodiversity and Conservation 20, 345358.Google Scholar
Mira, S., Veiga-Barbosa, L. and Pérez-García, F. (2015b) Seed germination characteristics of Phillyrea angustifolia L. and P. latifolia L. (Oleaceae), two Mediterranean shrub species having lignified endocarp. Annals of Forest Research 58, 2737.Google Scholar
Moreno, J.M., Zavala, G., Martín, M. and Millán, A. (2010) Forest fire risk in Spain under future climate change. In Settele, J., Georgiev, T., Grabaum, R., Grobelnik, V., Hammen, V., Klotz, S., Kotarac, M. and Kuehn, I. (eds), Atlas of Biodiversity Risk. Sofia, Bulgaria: Pensoft Publishers.Google Scholar
Moriondo, M., Good, P., Durao, R., Bindi, M., Giannakopoulos, C. and Corte-Real, J. (2006) Potential impact of climate change on fire risk in the Mediterranean area. Climate Research 31, 8595.Google Scholar
Nicotra, A.B., Atkin, O.K., Bonser, S.P., Davidson, A.M., Finnegan, E.J., Mathesius, U., Poot, P., Purugganan, M.D., Richards, C.L.,Valladares, F. and van Kleunen, M. (2010) Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684692.Google Scholar
Pausas, J., Llovet, J., Rodrigo, A. and Vallejo, R. (2008) Are wildfires a disaster in the Mediterranean basin? – a review. International Journal of Wildland Fire 17, 713723.Google Scholar
Pérez-García, F. (1993) Effect of the origin of the cypsela on germination of Onopordum acanthium L. (Asteraceae). Seed Science and Technology 21, 187195.Google Scholar
Pérez-García, F. (1997) Germination of Cistus ladanifer seeds in relation to parent material. Plant Ecology 133, 5762.Google Scholar
Pérez-García, F. (2005) Seed germination of different populations of wild (n=9) Brassica montana and B. oleracea . Spanish Journal of Agricultural Research 3, 331334.Google Scholar
Pérez-García, F. (2009) Germination characteristics and intrapopulation variation in carob (Ceratonia siliqua L.) seeds. Spanish Journal of Agricultural Research 7, 398406.Google Scholar
Pérez-García, F. and González-Benito, M.E. (2012) Intrapopulation variation in seed germination of six rockrose (Cistus L.) species. Acta Horticulturae 937, 379384.Google Scholar
Pérez-García, F., Hornero, J. and González-Benito, M.E. (2003) Interpopulation variation in seed germination of five Mediterranean Labiatae shrubby species. Israel Journal of Plant Science 51, 117124.Google Scholar
Pérez-García, F., Huertas, M., Mora, E., Peña, B., Varela, F. and González-Benito, M.E. (2006) Hypericum perforatum L. seed germination: intrapopulation variation and effect of light, temperature, presowing treatments and seed desiccation. Genetic Resources and Crop Evolution 53, 11871198.Google Scholar
Pérez-García, F. and Pita, J.M. (1989) Mechanical resistance of the seed coat during germination of Onopordum nervosum Boiss. Seed Science and Technology 17, 277282.Google Scholar
Pérez-García, F., Varela, F. and González-Benito, M.E. (2012) Morphological and germination response variability in seeds of wild Bellow gentian (Gentiana lutea L.) accessions from northwest Spain. Botany 90, 731742.Google Scholar
Qaderi, M.M. and Cavers, P.B. (2002) Effects of dry heat on the germinability and viability of Scotch thistle (Onopordum acanthium) cypselas: interpopulation and interposition variation. Canadian Journal of Botany 81, 684697.Google Scholar
Rasband, W.S. (1997–2015) ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. Available at: http://imagej.nih.gov/ij/ Google Scholar
Reed, T.E., Schindler, D.E. and Waples, R.S. (2011) Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conservation Biology 25, 5663.Google Scholar
R Core Team (2015). R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing. Available at: http://www.R-project.org/ Google Scholar
Renzi, J.P., Chantre, G.R. and Cantamutto, M.A. (2016) Effect of water availability and seed source on physical dormancy break of Vicia villosa ssp. villosa . Seed Science Research (online). doi: http://dx.doi.org/10.1017/S096025851600012X Google Scholar
Ritz, C., Pipper, C.B. and Streibig, J.C. (2013) Analysis of germination data from agricultural experiments. European Journal of Agronomy 45, 16.CrossRefGoogle Scholar
Ritz, C. and Streibig, J.C. (2005) Bioassay analysis using R. Journal of Statistics Software 12, 122.CrossRefGoogle Scholar
Ruprecht, E., Fenesi, A., Fodor, E., Kuhn, T. and Tökölyi, J. (2015) Shape determines fire tolerance of seeds in temperate grasslands that are not prone to fire. Perspectives in Plant Ecology, Evolution and Systematics 17, 397404.Google Scholar
Tavşanoğlu, C. and Çatav, S. (2012) Seed size explains within-population variability in post-fire germination of Cistus salviifolius . Annales Botanici Fennici 49, 331340.Google Scholar
Takos, I.A. and Efthimiou, G.S.P. (2003) Germination results on dormant seeds of fifteen tree species autumn sown in a northern greek nursery. Silvae Genetica 52, 6771.Google Scholar
Traveset, A., Robertson, Q.W. and Rodríguez-Pérez, J. (2007) A review on the role of endozoochory in seed germination. In Dennis, A.J., Schupp, E.W., Green, R.A. and Westcott, D.A. (eds), Seed Dispersal, Theory and its Application in a Changing World, pp. 78103. London, UK: CABI Publishing.Google Scholar
Traveset, A., Rodríguez-Pérez, J. and Pias, B. (2008) Seed trait changes in dispersers’ guts and consequences for germination and seedling growth. Ecology 89, 95106.Google Scholar
Vitale, M., Capogna, F. and Manes, F. (2007) Resilience assessment on Phillyrea angustifolia L. maquis undergone to experimental fire through a big-leaf modelling approach. Ecological Modelling 203, 387394.CrossRefGoogle Scholar
Walck, J., Hidayati, S.N., Dixon, K.W., Thompson, K. and Poschlod, P. (2011) Climate change and plant regeneration from seed. Global Change Biology 17, 21452161.Google Scholar
Wenning, R.J. and Erickson, G.A. (1994) Interpretation and analysis of complex environmental data using chemometric methods. Trends in Analytical Chemistry 13, 446457.Google Scholar
Wulff, R.D. (1995) Environmental maternal effects on seed quality and germination. In Kigel, J. and Galili, G. (eds), Seed Development and Germination, pp. 491506. New York, USA: Marcel Dekker.Google Scholar