Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T05:37:00.841Z Has data issue: false hasContentIssue false

(Epi)genetic control of secondary seed dormancy depth and germination in Capsella bursa-pastoris

Published online by Cambridge University Press:  29 November 2022

Sara Gomez-Cabellos
Affiliation:
Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, C/Catedrático Rodrigo Uría, 33006 Oviedo, Spain
Peter E. Toorop
Affiliation:
Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
Eduardo Fernández-Pascual
Affiliation:
Departamento de Biología de Organismos y Sistemas, Universidad de Oviedo, C/Catedrático Rodrigo Uría, 33006 Oviedo, Spain IMIB – Biodiversity Research Institute, University of Oviedo, Mieres, Spain
Pietro P. M. Iannetta
Affiliation:
The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
Hugh W. Pritchard
Affiliation:
Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
Anne M. Visscher*
Affiliation:
Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex RH17 6TN, UK
*
*Author for Correspondence: Anne M. Visscher, E-mail: [email protected]

Abstract

Despite the importance of secondary dormancy for plant life cycle timing and survival, there is insufficient knowledge about the (epigenetic) regulation of this trait at the molecular level. Our aim was to determine the role of (epi)genetic processes in the regulation of secondary seed dormancy using natural genotypes of the widely distributed Capsella bursa-pastoris. Seeds of nine ecotypes were exposed to control conditions or histone deacetylase inhibitors [trichostatin A (TSA), valproic acid] during imbibition to study the effects of hyper-acetylation on secondary seed dormancy induction and germination. Valproic acid increased secondary dormancy and both compounds caused a delay of t50 for germination (radicle emergence) but not of t50 for testa rupture, demonstrating that they reduced speed of germination. Transcriptome analysis of one accession exposed to valproic acid versus water showed mixed regulation of ABA, negative regulation of GAs, BRs and auxins, as well as up-regulation of SNL genes, which might explain the observed delay in germination and increase in secondary dormancy. In addition, two accessions differing in secondary dormancy depth (deep vs non-deep) were studied using RNA-seq to reveal the potential regulatory processes underlying this trait. Phytohormone synthesis or signalling was generally up-regulated for ABA (e.g. NCED6, NCED2, ABCG40, ABI3) and down-regulated for GAs (GA20ox1, GA20ox2, bHLH93), ethylene (ACO1, ERF4-LIKE, ERF105, ERF109-LIKE), BRs (BIA1, CYP708A2-LIKE, probable WRKY46, BAK1, BEN1, BES1, BRI1) and auxin (GH3.3, GH3.6, ABCB19, TGG4, AUX1, PIN6, WAT1). Epigenetic candidates for variation in secondary dormancy depth include SNL genes, histone deacetylases and associated genes (HDA14, HDA6-LIKE, HDA-LIKE, ING2, JMJ30), as well as sequences linked to histone acetyltransferases (bZIP11, ARID1A-LIKE), or to gene silencing through histone methylation (SUVH7, SUVH9, CLF). Together, these results show that phytohormones and epigenetic regulation play an important role in controlling differences in secondary dormancy depth between accessions.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali-Rachedi, S, Bouinot, D, Wagner, MH, Bonnet, M, Sotta, B, Grappin, P and Jullien, M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219, 479488. doi:10.1007/s00425-004-1251-4CrossRefGoogle ScholarPubMed
Ariizumi, T, Lawrence, PK and Steber, CM (2011) The role of two F-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling. Plant Physiology 155, 765775. doi:10.1104/pp.110.166272CrossRefGoogle ScholarPubMed
Ashikawa, I, Abe, F and Nakamura, S (2010) Ectopic expression of wheat and barley DOG1-like genes promotes seed dormancy in Arabidopsis. Plant Science 179, 536542. doi:10.1016/j.plantsci.2010.08.002CrossRefGoogle ScholarPubMed
Bai, B, Novák, O, Ljung, K, Hanson, J and Bentsink, L (2018) Combined transcriptome and translatome analyses reveal a role for tryptophan-dependent auxin biosynthesis in the control of DOG1-dependent seed dormancy. New Phytologist 217, 10771085. doi:10.1111/nph.14885CrossRefGoogle ScholarPubMed
Baskin, JM and Baskin, CC (1989) Germination responses of buried seeds of Capsella bursa-pastoris exposed to seasonal temperature changes. Weed Research 29, 205212. doi:10.1111/j.1365-3180.1989.tb00860.xCrossRefGoogle Scholar
Baskin, CC and Baskin, JM (2014) Seeds: ecology, biogeography, and, evolution of dormancy and germination. Elsevier Inc. doi:10.1016/C2013-0-00597-XGoogle Scholar
Beaudoin, N, Serizet, C, Gosti, F and Giraudat, J (2000) Interactions between abscisic acid and ethylene signaling cascades. The Plant Cell 12, 11031115. doi:10.1105/tpc.12.7.1103CrossRefGoogle ScholarPubMed
Benech-Arnold, RL, Sanchez, RA, Forcella, F, Betina, KC and Ghersa, CM (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67, 105122. doi:10.1159/000142249CrossRefGoogle Scholar
Bentsink, L and Koornneef, M (2008) Seed dormancy and germination. Arabidopsis Book 6, e0119. doi:10.1199/tab.0119Google Scholar
Bentsink, L, Jowett, J, Hanhart, CJ and Koornneef, M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 1704217047. doi:10.1073/pnas.0607877103CrossRefGoogle ScholarPubMed
Berr, A, Shafiq, S and Shen, WH (2011) Histone modifications in transcriptional activation during plant development. Biochimica et Biophysica Acta – Gene Regulatory Mechanisms 1809, 567576. doi:10.1016/j.bbagrm.2011.07.001CrossRefGoogle ScholarPubMed
Bewley, JD and Black, M (1994) Seeds: physiology of development and germination (2nd edn). New York, Springer Science+Business Media.CrossRefGoogle Scholar
Bouyer, D, Roudier, F, Heese, M, Andersen, ED, Gey, D, Nowack, MK, Goodrich, J, Renou, JP, Grini, PE, Colot, V and Schnittger, A (2011) Polycomb Repressive Complex 2 controls the embryo-to-seedling phase transition. PLoS Genetics 7, e1002014. doi:10.1371/journal.pgen.1002014CrossRefGoogle ScholarPubMed
Bowen, AJ, Gonzalez, D, Mullins, JGL, Bhatt, AM, Martinez, A and Conlan, RS (2010) PAH-domain-specific interactions of the Arabidopsis transcription coregulator SIN3-LIKE1 (SNL1) with Telomere-binding Protein 1 and ALWAYS EARLY2 Myb-DNA binding factors. Journal of Molecular Biology 395, 937949. doi:10.1016/j.jmb.2009.11.065CrossRefGoogle ScholarPubMed
Braybrook, SA and Harada, JJ (2008) LECs go crazy in embryo development. Trends in Plant Science 13, 624630. doi:10.1016/j.tplants.2008.09.008CrossRefGoogle ScholarPubMed
Braybrook, SA, Stone, SL, Park, S, Bui, AQ, Le, BH, Fischer, RL, Goldberg, RB and Harada, JJ (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 103, 34683473. doi:10.1073/pnas.0511331103CrossRefGoogle ScholarPubMed
Buijs, G (2020) A perspective on secondary seed dormancy in Arabidopsis thaliana. Plants 9, 19. doi:10.3390/plants9060749CrossRefGoogle ScholarPubMed
Buijs, G, Vogelzang, A, Nijveen, H and Bentsink, L (2020) Dormancy cycling: translation-related transcripts are the main difference between dormant and non-dormant seeds in the field. Plant Journal 102, 327339. doi:10.1111/tpj.14626CrossRefGoogle ScholarPubMed
Cadman, CSC, Toorop, PE, Hilhorst, HWM and Finch-Savage, WE (2006) Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant Journal 46, 805822. doi:10.1111/j.1365-313X.2006.02738.xCrossRefGoogle ScholarPubMed
Campanoni, P and Nick, P (2005) Auxin-dependent cell division and cell elongation. 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiology 137, 939948. doi:10.1104/pp.104.053843CrossRefGoogle ScholarPubMed
Carbonero, P, Iglesias-Fernández, R and Vicente-Carbajosa, J (2017) The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds. Journal of Experimental Botany 68, 871880. doi:10.1093/jxb/erw458Google ScholarPubMed
Carrera, E, Holman, T, Medhurst, A, Dietrich, D, Footitt, S, Theodoulou, FL and Holdsworth, MJ (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant Journal 53, 214224. doi:10.1111/j.1365-313X.2007.03331.xCrossRefGoogle ScholarPubMed
Carrillo-Barral, N, Del Carmen Rodríguez-Gacio, M and Matilla, AJ (2020) Delay of germination-1 (DOG1): a key to understanding seed dormancy. Plants 9, 480. doi:10.3390/plants9040480CrossRefGoogle ScholarPubMed
Champion, GT, May, MJ, Bennett, S, Brooks, DR, Clark, SJ, Daniels, RE, Firbank, LG, Haughton, AJ, Hawes, C, Heard, MS, Perry, JN, Randle, Z, Rossall, MJ, Rothery, P, Skellern, MP, Scott, RJ, Squire, GR and Thomas, MR (2003) Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philosophical Transactions of the Royal Society B Biological Sciences 358, 18011818. doi:10.1098/rstb.2003.1405Google ScholarPubMed
Chang, P-K and Scharfenstein, LL (2014) Aspergillus flavus Blast2GO gene ontology database: elevated growth temperature alters amino acid metabolism. Journal of Genetics and Genome Research 1, 17. doi:10.23937/2378-3648/1410005CrossRefGoogle Scholar
Chapman, EJ and Estelle, M (2009) Mechanism of auxin-regulated gene expression in plants. Annual Review of Genetics 43, 265285. doi:10.1146/annurev-genet-102108-134148CrossRefGoogle ScholarPubMed
Chateauvieux, S, Morceau, F, Dicato, M and Diederich, M (2010) Molecular and therapeutic potential and toxicity of valproic acid. Journal of Biomedicine and Biotechnology 2010, 479364. doi:10.1155/2010/479364CrossRefGoogle ScholarPubMed
Chen, LT and Wu, K (2010) Role of histone deacetylases HDA6 and HDA19 in ABA and abiotic stress response. Plant Signaling and Behavior 5, 13181320. doi:10.4161/psb.5.10.13168CrossRefGoogle ScholarPubMed
Chen, TT, Liu, FF, Xiao, DW, Jiang, XY, Li, P, Zhao, SM, Hou, BK and Li, YJ (2020) The Arabidopsis UDP-glycosyltransferase75B1, conjugates abscisic acid and affects plant response to abiotic stresses. Plant Molecular Biology 102, 389401. doi:10.1007/s11103-019-00953-4CrossRefGoogle ScholarPubMed
Cigliano, RA, Cremona, G, Paparo, R, Termolino, P, Perrella, G, Gutzat, R, Consiglio, MF and Conicella, C (2013) Histone deacetylase AtHDA7 is required for female gametophyte and embryo development in Arabidopsis. Plant Physiology 163, 431440. doi:10.1104/pp.113.221713CrossRefGoogle ScholarPubMed
Colville, A, Alhattab, R, Hu, M, Labbé, H, Xing, T and Miki, B (2011) Role of HD2 genes in seed germination and early seedling growth in Arabidopsis. Plant Cell Reports 30, 19691979. doi:10.1007/s00299-011-1105-zCrossRefGoogle ScholarPubMed
Conesa, A and Götz, S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics 2008, 619832. doi:10.1155/2008/619832CrossRefGoogle ScholarPubMed
Corbineau, F, Xia, Q, Bailly, C and El-Maarouf-Bouteau, H (2014) Ethylene, a key factor in the regulation of seed dormancy. Frontiers in Plant Science 5, 113. doi:10.3389/fpls.2014.00539CrossRefGoogle ScholarPubMed
Coughlan, JM, Saha, A and Donohue, K (2017) Effects of pre- and post-dispersal temperature on primary and secondary dormancy dynamics in contrasting genotypes of Arabidopsis thaliana (Brassicaceae). Plant Species Biology 32, 210222. doi:10.1111/1442-1984.12145CrossRefGoogle Scholar
Cui, L, Miao, J, Furuya, T, Fan, Q, Li, X, Rathod, PK, Su, XZ and Cui, L (2008) Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development. Eukaryotic Cell 7, 12001210. doi:10.1128/EC.00063-08CrossRefGoogle ScholarPubMed
Curaba, J, Moritz, T, Blervaque, R, Parcy, F, Raz, V, Herzog, M and Vachon, G (2004) AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis. Plant Physiology 136, 36603669. doi:10.1104/pp.104.047266CrossRefGoogle ScholarPubMed
Dekkers, BJW and Bentsink, L (2015) Regulation of seed dormancy by abscisic acid and DELAY OF GERMINATION 1. Seed Science Research 25, 8298. doi:10.1017/S0960258514000415CrossRefGoogle Scholar
Du, H-N (2012) Transcription, DNA damage and beyond: the roles of histone ubiquitination and deubiquitination. Current Protein and Peptide Science 13, 447466. doi:10.2174/138920312802430617CrossRefGoogle ScholarPubMed
Engelhorn, J, Blanvillain, R and Carles, CC (2014) Gene activation and cell fate control in plants: a chromatin perspective. Cellular and Molecular Life Sciences 71, 31193137. doi:10.1007/s00018-014-1609-0CrossRefGoogle ScholarPubMed
Espinosa-Cores, L, Bouza-Morcillo, L, Barrero-Gil, J, Jiménez-Suárez, V, Lázaro, A, Piqueras, R, Jarillo, JA and Piñeiro, M (2020) Insights into the function of the NuA4 complex in plants. Frontiers in Plant Science 11, 118. doi:10.3389/fpls.2020.00125CrossRefGoogle ScholarPubMed
Finch-Savage, WE and Footitt, S (2017) Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. Journal of Experimental Botany 68, 843856. doi:10.1093/jxb/erw477CrossRefGoogle ScholarPubMed
Finch-Savage, WE and Leubner-Metzger, G (2006) Seed dormancy and the control of germination. New Phytologist 171, 501523. doi:10.1063/1.1661985CrossRefGoogle ScholarPubMed
Finkelstein, R, Reeves, W, Ariizumi, T and Steber, C (2008) Molecular aspects of seed dormancy. Annual Review of Plant Biology 59, 387415. doi:10.1146/annurev.arplant.59.032607.092740CrossRefGoogle ScholarPubMed
Footitt, S and Finch-Savage, WE (2017) Dormancy and control of seed germination, pp. 130 in Clemens, S (Ed.), Plant physiology and function. The plant sciences, New York, NY, Springer. doi:10.1007/978-1-4614-7611-5_7-1Google Scholar
Footitt, S, Douterelo-Soler, I, Clay, H and Finch-Savage, WE (2011) Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences 108, 2023620241. doi:10.1073/pnas.1116325108CrossRefGoogle ScholarPubMed
Footitt, S, Huang, Z, Clay, HA, Mead, A and Finch-Savage, WE (2013) Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant Journal 74, 10031015. doi:10.1111/tpj.12186CrossRefGoogle Scholar
Footitt, S, Müller, K, Kermode, AR and Finch-Savage, WE (2015) Seed dormancy cycling in Arabidopsis: chromatin remodelling and regulation of DOG1 in response to seasonal environmental signals. Plant Journal 81, 413425. doi:10.1111/tpj.12735CrossRefGoogle ScholarPubMed
Footitt, S, Clewes, R, Feeney, M, Finch-Savage, WE and Frigerio, L (2019) Aquaporins influence seed dormancy and germination in response to stress. Plant Cell and Environment 42, 23252339. doi: 10.1111/pce.13561.CrossRefGoogle ScholarPubMed
Footitt, S, Walley, PG, Lynn, JR, Hambidge, AJ, Penfield, S and Finch-Savage, WE (2020) Trait analysis reveals DOG1 determines initial depth of seed dormancy, but not changes during dormancy cycling that result in seedling emergence timing. New Phytologist 225, 20352047. doi:10.1111/nph.16081CrossRefGoogle Scholar
Fu, X and Harberd, NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740743. doi:10.1038/nature01387CrossRefGoogle ScholarPubMed
Gao, F, Jordan, MC and Ayele, BT (2012) Transcriptional programs regulating seed dormancy and its release by after-ripening in common wheat (Triticum aestivum L.). Plant Biotechnology Journal 10, 465476. doi:10.1111/j.1467-7652.2012.00682.xCrossRefGoogle ScholarPubMed
Gazzarrini, S, Tsuchiya, Y, Lumba, S, Okamoto, M and McCourt, P (2004) The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Developmental Cell 7, 373385. doi:10.1016/j.devcel.2004.06.017CrossRefGoogle ScholarPubMed
Ghassemian, M, Nambara, E, Cutler, S, Kawaide, H, Kamiya, Y and McCourt, P (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. The Plant Cell 12, 11171126. doi:10.1105/tpc.12.7.1117CrossRefGoogle ScholarPubMed
Gomez-Cabellos, S, Toorop, PE, Cañal, MJ, Iannetta, PPM, Fernández-Pascual, E, Pritchard, HW and Visscher, AM (2021) Global DNA methylation and cellular 5-methylcytosine and H4 acetylated patterns in primary and secondary dormant seeds of Capsella bursa-pastoris (L.) Medik. (shepherd's purse). Protoplasma 259, 595614.CrossRefGoogle ScholarPubMed
Göttlicher, M, Minucci, S, Zhu, P, Krämer, OH, Schimpf, A, Giavara, S, Sleeman, JP, Lo Coco, F, Nervi, C, Pelicci, PG and Heinzel, T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO Journal 20, 69696978. doi:10.1093/emboj/20.24.6969CrossRefGoogle ScholarPubMed
Götz, S, García-Gómez, JM, Terol, J, Williams, TD, Nagaraj, SH, Nueda, MJ, Robles, M, Talón, M, Dopazo, J and Conesa, A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research 36, 34203435. doi:10.1093/nar/gkn176CrossRefGoogle ScholarPubMed
Graeber, K, Linkies, A, Müller, K, Wunchova, A, Rott, A and Leubner-Metzger, G (2010) Cross-species approaches to seed dormancy and germination: conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes. Plant Molecular Biology 73, 6787. doi:10.1007/s11103-009-9583-xCrossRefGoogle ScholarPubMed
Graeber, K, Linkies, A, Steinbrecher, T, Mummenhoff, K, Tarkowská, D, Turečková, V, Ignatz, M, Sperber, K, Voegele, A, De Jong, H, Urbanová, T, Strnad, M and Leubner-Metzger, G (2014) DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proceedings of the National Academy of Sciences of the United States of America 111, E3571E3580. doi:10.1073/pnas.1403851111Google ScholarPubMed
Hao, X, Yang, Y, Yue, C, Wang, L, Horvath, DP and Wang, X (2017) Comprehensive transcriptome analyses reveal differential gene expression profiles of Camellia sinensis axillary buds at para-, endo-, ecodormancy, and bud flush stages. Frontiers in Plant Science 8, 119. doi:10.3389/fpls.2017.00553CrossRefGoogle ScholarPubMed
He, R, Yu, D, Li, X, Duan, G, Zhang, Y, Tang, D, Zhao, X and Liu, X (2016) F-box gene FOA2 regulates GA- and ABA- mediated seed germination in Arabidopsis. Science China Life Sciences 59, 11921194. doi:10.1007/s11427-016-0098-3CrossRefGoogle ScholarPubMed
Hilhorst, HWM (1998) The regulation of secondary dormancy. The membrane hypothesis revisited. Seed Science Research 8, 7790. doi:10.1017/S0960258500003974CrossRefGoogle Scholar
Hilhorst, HWM and Toorop, PE (1997) Review on dormancy, germinability and germination in crop and weed seeds. Advances in Agronomy 61, 112165.Google Scholar
Hintz, M, Bartholmes, C, Nutt, P, Ziermann, J, Hameister, S, Neuffer, B and Theissen, G (2006) Catching a ‘hopeful monster’: shepherd's purse (Capsella bursa-pastoris) as a model system to study the evolution of flower development. Journal of Experimental Botany 57, 35313542. doi:10.1093/jxb/erl158CrossRefGoogle Scholar
Holdsworth, MJ, Finch-Savage, WE, Grappin, P and Job, D (2008a) Post-genomics dissection of seed dormancy and germination. Trends in Plant Science 13, 713. doi:10.1016/j.tplants.2007.11.002CrossRefGoogle ScholarPubMed
Holdsworth, MJ, Bentsink, L and Soppe, WJJ (2008b) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytologist 179, 3354. doi:10.1111/j.1469-8137.2008.02437.xCrossRefGoogle ScholarPubMed
Hourston, JE, Steinbrecher, T, Chandler, JO, Pérez, M, Dietrich, K, Turečková, V, Tarkowská, D, Strnad, M, Weltmeier, F, Meinhard, J, Fischer, U, Fiedler-Wiechers, K, Ignatz, M and Leubner-Metzger, G (2022) Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris. Plant Cell and Environment 45, 13151332. doi:10.1111/pce.14264CrossRefGoogle ScholarPubMed
Huo, H, Wei, S and Bradford, KJ (2016) DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways. Proceedings of the National Academy of Sciences 113, E2199E2206. doi:10.1073/pnas.1600558113CrossRefGoogle ScholarPubMed
Hurka, H and Haase, R (1982) Seed ecology of Capsella bursa-pastoris (Cruciferae): dispersal mechanism and the soil seed bank. Flora 172, 3546. doi:10.1016/S0367-2530(17)31309-9CrossRefGoogle Scholar
Hurka, H and Neuffer, B (1997) Evolutionary processes in the genus Capsella (Brassicaceae). Plant Systematics and Evolution 206, 295316. doi:10.1007/BF00987954CrossRefGoogle Scholar
Iannetta, PPM, Begg, G, Hawes, C, Young, M, Russell, J and Squire, GR (2007) Variation in Capsella (shepherd's purse): an example of intraspecific functional diversity. Physiologia Plantarum 129, 542554. doi:10.1111/j.1399-3054.2006.00833.xCrossRefGoogle Scholar
Ibarra, SE, Tognacca, RS, Dave, A, Graham, IA, Sánchez, RA and Botto, JF (2016) Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds. Plant Cell and Environment 39, 213221. doi:10.1111/pce.12607.CrossRefGoogle ScholarPubMed
Jackson, JP, Lindroth, AM, Cao, X and Jacobsen, SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556560. doi:10.1038/nature731CrossRefGoogle ScholarPubMed
Kanyuka, K, Praekelt, U, Franklin, KA, Billingham, OE, Hooley, R, Whitelam, GC and Halliday, KJ (2003) Mutations in the huge Arabidopsis gene BIG affect a range of hormone and light responses. Plant Journal 35, 5770. doi:10.1046/j.1365-313X.2003.01779.xCrossRefGoogle ScholarPubMed
Kasianov, AS, Klepikova, AV, Kulakovskiy, IV, Gerasimov, ES, Fedotova, AV, Besedina, EG, Kondrashov, AS, Logacheva, MD and Penin, AA (2017) High-quality genome assembly of Capsella bursa-pastoris reveals asymmetry of regulatory elements at early stages of polyploid genome evolution. Plant Journal 91, 278291. doi:10.1111/tpj.13563CrossRefGoogle ScholarPubMed
Katsuya-Gaviria, K, Caro, E, Carrillo-barral, N and Iglesias-fernández, R (2020) Reactive oxygen species (ROS) and nucleic acid modifications during seed dormancy. Plants 9, 114. doi:10.3390/plants9060679CrossRefGoogle ScholarPubMed
Kendall, S and Penfield, S (2012) Maternal and zygotic temperature signalling in the control of seed dormancy and germination. Seed Science Research 22, S23S29. doi:10.1017/S0960258511000390CrossRefGoogle Scholar
Kim, SY, Warpeha, KM and Huber, SC (2019) The brassinosteroid receptor kinase, BRI1, plays a role in seed germination and the release of dormancy by cold stratification. Journal of Plant Physiology 241, 153031. doi:10.1016/j.jplph.2019.153031CrossRefGoogle Scholar
Koeller, KM, Haggarty, SJ, Perkins, BD, Leykin, I, Wong, JC, Kao, MCJ and Schreiber, SL (2003) Chemical genetic modifier screens: small molecule trichostatin suppressors as probes of intracellular histone and tubulin acetylation. Chemistry and Biology 10, 397410. doi:10.1016/S1074-5521(03)00093-0CrossRefGoogle ScholarPubMed
Krämer, OH, Zhu, P, Ostendorff, HP, Golebiewski, M, Tiefenbach, J, Peters, MA, Brill, B, Groner, B, Bach, I, Heinzel, T and Göttlicher, M (2003) The histone deacetylase inhibitor valproic acid selectively induces proteasomal degradation of HDAC2. Embo Journal 22, 34113420. doi:10.1093/emboj/cdg315CrossRefGoogle ScholarPubMed
Kucera, B, Cohn, MA and Leubner-Metzger, G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15, 281307. doi:10.1079/SSR2005218CrossRefGoogle Scholar
Laspina, NV, Batlla, D and Benech-Arnold, RL (2020) Dormancy cycling is accompanied by changes in ABA sensitivity in Polygonum aviculare seeds. Journal of Experimental Botany 71, 59245934. doi:10.1093/jxb/eraa340CrossRefGoogle ScholarPubMed
Law, RD and Suttle, JC (2002) Transient decreases in methylation at 5′-CCGG-3′ sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Molecular Biology 51, 437447. doi:10.1023/a:1022002304479CrossRefGoogle Scholar
Law, RD and Suttle, JC (2004) Changes in histone H3 and H4 multi-acetylation during natural and force dormancy break in potato tubers. Physiologia Plantarum 120, 642649. doi:10.1111/j.0031-9317.2004.0273.xGoogle Scholar
Leeggangers, HACF, Folta, A, Muras, A, Nap, JP and Mlynarova, L (2015) Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes. Physiologia Plantarum 153, 318326. doi:10.1111/ppl.12231CrossRefGoogle ScholarPubMed
Lepiniec, L, Devic, M, Roscoe, TJ, Bouyer, D, Zhou, DX, Boulard, C, Baud, S and Dubreucq, B (2018) Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reproduction 31, 291307. doi:10.1007/s00497-018-0337-2CrossRefGoogle ScholarPubMed
Leubner-Metzger, G (2001) Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta 213, 758763. doi:10.1007/s004250100542CrossRefGoogle ScholarPubMed
Li, C, Junttila, O, Ernstsen, A, Heino, P and Palva, ET (2003) Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiologia Plantarum 117, 206212. doi:10.1034/j.1399-3054.2003.00002.xCrossRefGoogle Scholar
Linkies, A and Leubner-Metzger, G (2012) Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Reports 31, 253270. doi:10.1007/s00299-011-1180-1.CrossRefGoogle ScholarPubMed
Linkies, A, Muller, K, Morris, K, Tureckova, V, Wenk, M, Cadman, CSC, Corbineau, F, Strnad, M, Lynn, JR, Finch-Savage, WE and Leubner-Metzger, G (2009) Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. The Plant Cell 21, 38033822. doi:10.1105/tpc.109.070201CrossRefGoogle ScholarPubMed
Liu, H and Stone, SL (2010) Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG e3 ligase self-ubiquitination and proteasomal degradation. The Plant Cell 22, 26302641. doi:10.1105/tpc.110.076075CrossRefGoogle ScholarPubMed
Liu, Y, Koornneef, M and Soppe, WJJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. The Plant Cell 19, 433444. doi:10.1105/tpc.106.049221CrossRefGoogle ScholarPubMed
Liu, Y, Geyer, R, van Zanten, M, Carles, A, Li, Y, Hörold, A, van Nocker, S and Soppe, WJJ (2011) Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the Polymerase Associated Factor 1 complex in seed dormancy. PLoS ONE 6, 18. doi:10.1371/journal.pone.0022241Google ScholarPubMed
Liu, X, Zhang, H, Zhao, Y, Feng, Z, Li, Q, Yang, HQ, Luan, S, Li, J and He, ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 110, 1548515490. doi:10.1073/pnas.1304651110CrossRefGoogle ScholarPubMed
Lopez-Molina, L, Mongrand, S and Chua, NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 98, 47824787. doi:10.1073/pnas.081594298CrossRefGoogle ScholarPubMed
Lopez-Molina, L, Mongrand, S, McLachlin, DT, Chait, BT and Chua, NH (2002) ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant Journal 32, 317328. doi:10.1046/j.1365-313X.2002.01430.xCrossRefGoogle ScholarPubMed
Luo, M, Cheng, K, Xu, Y, Yang, S and Wu, K (2017) Plant responses to abiotic stress regulated by histone deacetylases. Frontiers in Plant Science 8, 17. doi:10.3389/fpls.2017.02147CrossRefGoogle ScholarPubMed
Martínez-Andújar, C, Ordiz, MI, Huang, Z, Nonogaki, M, Beachy, RN and Nonogaki, H (2011) Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy. Proceedings of the National Academy of Sciences 108, 1722517229. doi:10.1073/pnas.1112151108CrossRefGoogle ScholarPubMed
Matilla, AJ (2020) Seed dormancy: molecular control of its induction and alleviation. Plants 9, 16. doi:10.3390/plants9101402CrossRefGoogle ScholarPubMed
Matilla, AJ, Carrillo-Barral, N and Rodríguez-Gacio, MDC (2015) An update on the role of NCED and CYP707A ABA metabolism genes in seed dormancy induction and the response to after-ripening and nitrate. Journal of Plant Growth Regulation 34, 274293. doi:10.1007/s00344-014-9464-7CrossRefGoogle Scholar
Molitor, AM, Bu, Z, Yu, Y and Shen, WH (2014) Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genetics 10, e1004091. doi:10.1371/journal.pgen.1004091CrossRefGoogle ScholarPubMed
Müller, K, Bouyer, D, Schnittger, A and Kermode, AR (2012) Evolutionarily conserved histone methylation dynamics during seed life-cycle transitions. PLoS ONE 7, e51532. doi:10.1371/journal.pone.0051532CrossRefGoogle ScholarPubMed
Nagar, PK and Sood, S (2006) Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiologiae Plantarum 28, 165169. doi:10.1007/s11738-006-0043-9CrossRefGoogle Scholar
Nambara, E, Okamoto, M, Tatematsu, K, Yano, R, Seo, M and Kamiya, Y (2010) Abscisic acid and the control of seed dormancy and germination. Seed Science Research 20, 5567. doi:10.1017/S0960258510000012CrossRefGoogle Scholar
Née, G, Kramer, K, Nakabayashi, K, Yuan, B, Xiang, Y, Miatton, E, Finkemeier, I and Soppe, WJJ (2017) DELAY of GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications 8, 72. doi:10.1038/s41467-017-00113-6CrossRefGoogle ScholarPubMed
Nelson, SK, Ariizumi, T and Steber, CM (2017) Biology in the dry seed: transcriptome changes associated with dry seed dormancy and dormancy loss in the Arabidopsis GA-insensitive sleepy1-2 mutant. Frontiers in Plant Science 8, 121. doi:10.3389/fpls.2017.02158.CrossRefGoogle ScholarPubMed
Neuffer, B and Eschner, S (1995) Life-history traits and ploidy levels in the genus Capsella (Brassicaceae). Canadian Journal of Botany 73, 13541365. doi:10.1139/b95-147CrossRefGoogle Scholar
Neuffer, B and Hurka, H (1986) Germination behaviour in populations of Capsella bursa-pastoris (Cruciferae). Plant Systematics and Evolution 161, 3547. doi:10.1007/BF00936010CrossRefGoogle Scholar
Nonogaki, H, Nishiyama, E, Ohshima, K and Nonogaki, M (2020) Ancient memories of seeds: ABA-dependent growth arrest and reserve accumulation. Trends in Genetics 36, 464473. doi:10.1016/j.tig.2020.04.009CrossRefGoogle ScholarPubMed
Paul, A, Jha, A, Bhardwaj, S, Singh, S, Shankar, R and Kumar, S (2014) RNA-seq-mediated transcriptome analysis of actively growing and winter dormant shoots identifies non-deciduous habit of evergreen tree tea during winters. Scientific Reports 4, 19. doi:10.1038/srep05932CrossRefGoogle Scholar
Peeters, AJM, Vries, HBD, Hanhart, CJ, Léon-Kloosterziel, KM, Zeevaart, JAD and Koornneef, M (2002) Characterization of mutants with reduced seed dormancy at two novel rdo loci and a further characterization of rdo1 and rdo2 in Arabidopsis. Physiologia Plantarum 115, 604612. doi:10.1034/j.1399-3054.2002.1150415.xCrossRefGoogle Scholar
Perrella, G, Consiglio, MF, Aiese-Cigliano, R, Cremona, G, Sanchez-Moran, E, Barra, L, Errico, A, Bressan, RA, Franklin, FCH and Conicella, C (2010) Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant Journal 62, 796806. doi:10.1111/j.1365-313X.2010.04191.xCrossRefGoogle ScholarPubMed
Phiel, CJ, Zhang, F, Huang, EY, Guenther, MG, Lazar, MA and Klein, PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. The Journal of Biological Chemistry 276, 3673436741. doi:10.1074/jbc.M101287200CrossRefGoogle ScholarPubMed
Raz, V, Bergervoet, JHW and Koornneef, M (2001) Sequential steps for developmental arrest in Arabidopsis seeds. Development 128, 243252. doi:10.1242/dev.128.2.243.CrossRefGoogle ScholarPubMed
Ren, G, Xie, M, Zhang, S, Vinovskis, C, Chen, X and Yu, B (2014) Methylation protects microRNAs from an AGO1-associated activity that uridylates 5′ RNA fragments generated by AGO1 cleavage. Proceedings of the National Academy of Sciences of the United States of America 111, 63656370. doi:10.1073/pnas.1405083111.CrossRefGoogle ScholarPubMed
Richon, VM, Emiliani, S, Verdin, E, Webb, Y, Breslow, R, Rifkind, RA and Marks, PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proceedings of the National Academy of Sciences of the United States of America 95, 30033007. doi:10.1073/pnas.95.6.3003CrossRefGoogle ScholarPubMed
Rieu, I, Ruiz-Rivero, O, Fernandez-Garcia, N, Griffiths, J, Powers, SJ, Gong, F, Linhartova, T, Eriksson, S, Nilsson, O, Thomas, SG, Phillips, AL and Hedden, P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant Journal 53, 488504. doi:10.1111/j.1365-313X.2007.03356.xCrossRefGoogle ScholarPubMed
Ruta, V, Longo, C, Boccaccini, A, Madia, VN, Saccoliti, F, Tudino, V, Di Santo, R, Lorrai, R, Dello Ioio, R, Sabatini, S, Costi, R, Costantino, P and Vittorioso, P (2019) Inhibition of Polycomb Repressive Complex 2 activity reduces trimethylation of H3K27 and affects development in Arabidopsis seedlings. BMC Plant Biology 19, 113. doi:10.1186/s12870-019-2057-7CrossRefGoogle ScholarPubMed
Ryu, H, Cho, H, Bae, W and Hwang, I (2014) Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nature Communications 5, 4138. doi:10.1038/ncomms5138CrossRefGoogle ScholarPubMed
Sano, N and Marion-Poll, A (2021) ABA metabolism and homeostasis in seed dormancy and germination. International Journal of Molecular Sciences 22, 5069. doi:10.3390/ijms22105069CrossRefGoogle ScholarPubMed
Sharma, N, Xin, R, Kim, DH, Sung, S, Lange, T and Huq, E (2016) NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis. Development (Cambridge) 143, 682690. doi:10.1242/dev.128595Google ScholarPubMed
Shen, Y, Devic, M, Lepiniec, L and Zhou, DX (2015) Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes. Plant Biotechnology Journal 13, 811820. doi:10.1111/pbi.12315CrossRefGoogle ScholarPubMed
Shi, X, Hong, T, Walter, KL, Ewalt, M, Michishita, E, Hung, T, Carney, D, Peña, P, Lan, F, Kaadige, MR, Lacoste, N, Cayrou, C, Davrazou, F, Saha, A, Cairns, BR, Ayer, DE, Kutateladze, TG, Shi, Y, Côté, J, Chua, KF and Gozani, O (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442, 9699. doi:10.1038/nature04835CrossRefGoogle ScholarPubMed
Shu, K, Zhang, H, Wang, S, Chen, M, Wu, Y, Tang, S, Liu, C, Feng, Y, Cao, X and Xie, Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genetics 9, e1003577. doi:10.1371/journal.pgen.1003577CrossRefGoogle ScholarPubMed
Shu, K, Liu, XD, Xie, Q and He, ZH (2016) Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9, 3445. doi:10.1016/j.molp.2015.08.010CrossRefGoogle ScholarPubMed
Singh, M and Singh, J (2012) Seed development-related expression of ARGONAUTE4_9 class of genes in barley: possible role in seed dormancy. Euphytica 188, 123129. doi:10.1007/s10681-012-0624-1CrossRefGoogle Scholar
Sliwinska, E, Bassel, GW and Bewley, JD (2009) Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. Journal of Experimental Botany 60, 35873594. doi:10.1093/jxb/erp203CrossRefGoogle Scholar
Sridha, S and Wu, K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant Journal 46, 124133. doi:10.1111/j.1365-313X.2006.02678.xCrossRefGoogle ScholarPubMed
Stone, SL, Braybrook, SA, Paula, SL, Kwong, LW, Meuser, J, Pelletier, J, Hsieh, TF, Fischer, RL, Goldberg, RB and Harada, JJ (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America 105, 31513156. doi:10.1073/pnas.0712364105CrossRefGoogle ScholarPubMed
Tai, HH, Tai, GCC and Beardmore, T (2005) Dynamic histone acetylation of late embryonic genes during seed germination. Plant Molecular Biology 59, 909925. doi:10.1007/s11103-005-2081-xCrossRefGoogle ScholarPubMed
Tanaka, M, Kikuchi, A and Kamada, H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiology 146, 149161. doi:10.1104/pp.107.111674CrossRefGoogle Scholar
Toorop, PE, Campos Cuerva, R, Begg, GS, Locardi, B, Squire, GR and Iannetta, PPM (2012) Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd's purse). Annals of Botany 109, 481489. doi:10.1093/aob/mcr301CrossRefGoogle ScholarPubMed
Tuan, PA, Kumar, R, Rehal, PK, Toora, PK and Ayele, BT (2018) Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Frontiers in Plant Science 9, 114. doi:10.3389/fpls.2018.00668CrossRefGoogle ScholarPubMed
Turner, BM (2000) Histone acetylation and an epigenetic code. BioEssays 22, 836845. doi:10.1002/1521-1878(200009)22:9<836::AID-BIES9>3.0.CO;2-X3.0.CO;2-X>CrossRefGoogle Scholar
Tyler, L, Thomas, SG, Hu, J, Dill, A, Alonso, JM, Ecker, JR and Sun, TP (2004) Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiology 135, 10081019. doi:10.1104/pp.104.039578CrossRefGoogle ScholarPubMed
Van Zanten, M, Zöll, C, Wang, Z, Philipp, C, Carles, A, Li, Y, Kornet, NG, Liu, Y and Soppe, WJJ (2014) HISTONE DEACETYLASE 9 represses seedling traits in Arabidopsis thaliana dry seeds. Plant Journal 80, 475488. doi:10.1111/tpj.12646CrossRefGoogle ScholarPubMed
Wang, Z, Cao, H, Sun, Y, Li, X, Chen, F, Carles, A, Li, Y, Ding, M, Zhang, C, Deng, X, Soppe, WJJ and Liu, Y-X (2013) Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid–ethylene antagonism mediated by histone deacetylation. The Plant Cell 25, 149166. doi:10.1105/tpc.112.108191CrossRefGoogle ScholarPubMed
Wang, Z, Cao, H, Chen, F and Liu, Y (2014) The roles of histone acetylation in seed performance and plant development. Plant Physiology and Biochemistry 84, 125133. doi:10.1016/j.plaphy.2014.09.010CrossRefGoogle ScholarPubMed
Wang, Z, Chen, F, Li, X, Cao, H, Ding, M, Zhang, C, Zuo, J, Xu, C, Xu, J, Deng, X, Xiang, Y, Soppe, WJJ and Liu, Y (2016) Arabidopsis seed germination speed is controlled by SNL histone deacetylase-binding factor-mediated regulation of AUX1. Nature Communications 7, 114. doi:10.1038/ncomms13412CrossRefGoogle ScholarPubMed
Wang, J, Gao, S, Peng, X, Wu, K and Yang, S (2019) Roles of the INO80 and SWR1 chromatin remodeling complexes in plants. International Journal of Molecular Sciences 20, 117. doi:10.3390/ijms20184591Google ScholarPubMed
Wang, Z, Ren, Z, Cheng, C, Wang, T, Ji, H, Zhao, Y, Deng, Z, Zhi, L, Lu, J, Wu, X, Xu, S, Cao, M, Zhao, H, Liu, L, Zhu, J and Li, X (2020) Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis. Molecular Plant 13, 12841297.CrossRefGoogle ScholarPubMed
Wang, Q, Lin, Q, Wu, T, Duan, E, Huang, Y, Yang, C, Mou, C, Lan, J, Zhou, C, Xie, K, Liu, X, Zhang, X, Guo, X, Wang, J, Jiang, L and Wan, J (2020) OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice. Plant Science 298, 110570. doi:10.1016/j.plantsci.2020.110570CrossRefGoogle ScholarPubMed
Wang, L, Zhang, F and Qiao, H (2020) Chromatin regulation in the response of ethylene: nuclear events in ethylene signaling. Small Methods 4, 17. doi:10.1002/smtd.201900288Google ScholarPubMed
Weiste, C and Dröge-Laser, W (2014) The Arabidopsis transcription factor bZIP11 activates auxin-mediated transcription by recruiting the histone acetylation machinery. Nature Communications 5, 3883. doi:10.1038/ncomms4883CrossRefGoogle ScholarPubMed
Wójcikowska, B and Gaj, MD (2015) LEAFY COTYLEDON2-mediated control of the endogenous hormone content: implications for the induction of somatic embryogenesis in Arabidopsis. Plant Cell, Tissue and Organ Culture 121, 255258. doi:10.1007/s11240-014-0689-8CrossRefGoogle Scholar
Wójcikowska, B, Botor, M, Morończyk, J, Wójcik, AM, Nodzyński, T, Karcz, J and Gaj, MD (2018) Trichostatin A triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Frontiers in Plant Science 9, 119. doi:10.3389/fpls.2018.01353CrossRefGoogle ScholarPubMed
Xi, W, Liu, C, Hou, X and Yu, H (2010) MOTHER OF FT and TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. The Plant Cell 22, 17331748. doi:10.1105/tpc.109.073072CrossRefGoogle ScholarPubMed
Xu, P, Tang, G, Cui, W, Chen, G, Ma, CL, Zhu, J, Li, P, Shan, L, Liu, Z and Wan, S (2020) Transcriptional differences in peanut (Arachis hypogaea L.) seeds at the freshly harvested, after-ripening and newly germinated seed stages: insights into the regulatory networks of seed dormancy release and germination. PLoS ONE 15, 121. doi:10.1371/journal.pone.0219413Google ScholarPubMed
Yan, Y, Shen, L, Chen, Y, Bao, S, Thong, Z and Yu, H (2014) A MYB-domain protein EFM mediates flowering responses to environmental cues in Arabidopsis. Developmental Cell 30, 437448. doi:10.1016/j.devcel.2014.07.004CrossRefGoogle ScholarPubMed
Yang, L, Jiang, Z, Liu, S and Lin, R (2020) Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis. New Phytologist 225, 15931605. doi:10.1111/nph.16236CrossRefGoogle ScholarPubMed
Yano, R, Takebayashi, Y, Nambara, E, Kamiya, Y and Seo, M (2013) Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana. Plant Journal 74, 815828. doi:10.1111/tpj.12167.CrossRefGoogle ScholarPubMed
Yoshida, M, Horinouchi, S and Beppu, T (1995) Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation. BioEssays 17, 423430. doi:10.1002/bies.950170510CrossRefGoogle ScholarPubMed
Yu, CW, Liu, X, Luo, M, Chen, C, Lin, X, Tian, G, Lu, Q, Cui, Y and Wu, K (2011) HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis. Plant Physiology 156, 173184. doi:10.1104/pp.111.174417CrossRefGoogle ScholarPubMed
Zha, P, Liu, S, Li, Y, Ma, T, Yang, L, Jing, Y and Lin, R (2020) The evening complex and the chromatin-remodeling factor PICKLE coordinately control seed dormancy by directly repressing DOG1 in Arabidopsis. Plant Communications 1, 100011. doi:10.1016/j.xplc.2019.100011CrossRefGoogle ScholarPubMed
Zhang, L, Qiu, Z, Hu, Y, Yang, F, Yan, S, Zhao, L, Li, B, He, S, Huang, M, Li, J and Li, L (2011) ABA treatment of germinating maize seeds induces VP1 gene expression and selective promoter-associated histone acetylation. Physiologia Plantarum 143, 287296. doi:10.1111/j.1399-3054.2011.01496.xCrossRefGoogle ScholarPubMed
Zhang, D, Jing, Y, Jiang, Z and Lin, R (2014) The chromatin-remodeling factor PICKLE integrates brassinosteroid and gibberellin signaling during skotomorphogenic growth in Arabidopsis. The Plant Cell 26, 24722485. doi:10.1105/tpc.113.121848CrossRefGoogle ScholarPubMed
Zhao, M, Yang, S, Liu, X and Wu, K (2015) Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes. Frontiers in Plant Science 6, 19. doi:10.3389/fpls.2015.00159CrossRefGoogle ScholarPubMed
Zheng, B, He, H, Zheng, Y, Wu, W and McCormick, S (2014) An ARID domain-containing protein within nuclear bodies is required for sperm cell formation in Arabidopsis thaliana. PLoS Genetics 10, e1004421. doi:10.1371/journal.pgen.1004421CrossRefGoogle ScholarPubMed
Zhou, C, Lin, Q, Lan, J, Zhang, T, Liu, X, Miao, R, Mou, C, Nguyen, T, Wang, J, Zhang, X, Zhou, L, Zhu, X, Wang, Q, Zhang, X, Guo, X, Liu, S, Jiang, L and Wan, J (2020) WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response. Frontiers in Plant Science 11, 115. doi:10.3389/fpls.2020.00691CrossRefGoogle ScholarPubMed
Zhu, H, Xie, W, Xu, D, Miki, D, Tang, K, Huang, C-F and Zhu, J-K (2018) DNA demethylase ROS1 negatively regulates the imprinting of DOGL4 and seed dormancy in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 115, 201812847. doi:10.1073/pnas.1812847115CrossRefGoogle ScholarPubMed
Supplementary material: File

Gomez-Cabellos et al. supplementary material

Gomez-Cabellos et al. supplementary material

Download Gomez-Cabellos et al. supplementary material(File)
File 71.4 MB