Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T00:08:38.902Z Has data issue: false hasContentIssue false

Ecogeographic and genetic determinants of kernel weight and colour of wild barley (Hordeum spontaneum) populations in Israel

Published online by Cambridge University Press:  22 February 2007

Guoxiong Chen
Affiliation:
Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
Tatiana Suprunova
Affiliation:
Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
Tamar Krugman
Affiliation:
Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
Tzion Fahima
Affiliation:
Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
Eviatar Nevo*
Affiliation:
Institute of Evolution, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
*
*Correspondence Fax: +972 4 8246554, Email: [email protected]

Abstract

The aim of this study was to establish associations of kernel weight and colour with ecogeographic factors and molecular markers, based on ten wild barley [Hordeum spontaneum (C. Koch) Thell.] populations sampled in Israel across a southward transect of increasing aridity. Kernel weight and colour category were scored using barley kernels (naked caryopsis). Small kernel sizes (0.011 g kernel–1) and dark kernels were found in xeric populations. A higher variation of kernel weight was observed in xeric populations. A higher proportion of variation occurred within, rather than among, populations. Water, temperature and soil factors were associated with kernel size variation. Among 18 simple sequence repeats (SSRs) investigated, HVM14, HVM36, HVM43, BMS64 and BMS90 were associated with kernel weight, and HVM68 with kernel colour. The results indicated that high phenotypic variation and genetic diversity are related to ecological stress, and that the association of phenotypic traits with molecular markers, based on natural plant populations, should be interpreted cautiously due to the high chance of spurious associations between traits and molecular markers.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ayoub, M., Symons, S.J., Edney, M.J. and Mather, D.E. (2002) QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theoretical and Applied Genetics 105, 237247.CrossRefGoogle Scholar
Backes, G., Graner, A., Foroughi-Wehr, B., Fischbeck, G., Wenzel, G. and Jahoor, A. (1995) Localization of quantitative trait loci (QTLs) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 90, 294302.CrossRefGoogle ScholarPubMed
Baek, H.J., Beharav, A. and Nevo, E. (2003) Ecological–genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan. Theoretical and Applied Genetics 106, 397410.CrossRefGoogle ScholarPubMed
Baum, B.R., Nevo, E., Johnson, D.A. and Beiles, A. (1997) Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: a molecular analysis using random amplified polymorphic DNA (RAPD) markers. Genetic Resources and Crop Evolution 44, 147157.CrossRefGoogle Scholar
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57, 289300.Google Scholar
Bezant, J., Laurie, D., Pratchett, N., Chojecki, J. and Kearsey, M. (1997) Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Molecular Breeding 3, 2938.CrossRefGoogle Scholar
Bhatty, R.S. and Rossnagel, B.G. (1998) Comparison of pearled and unpearled Canadian and Japanese barleys. Cereal Chemistry 75, 1521.CrossRefGoogle Scholar
Brown, A.H.D., Zohary, D. and Nevo, E. (1978) Outcrossing rates and heterozygosity in natural populations of Hordeum spontaneum Koch in Israel. Heredity 41, 4962.CrossRefGoogle Scholar
Cardon, L.R. and Palmer, L.J. (2003) Population stratification and spurious allelic association. Lancet 361, 598604.CrossRefGoogle ScholarPubMed
Chalmers, K.J., Waugh, R., Watters, J., Forster, B.P., Nevo, E., Abbott, R.J. and Powell, W. (1992) Grain isozyme and ribosomal DNA variability in Hordeum spontaneum populations from Israel. Theoretical and Applied Genetics 84, 313322.CrossRefGoogle ScholarPubMed
Christensen, M. (1981) Species diversity and dominance in fungal community. The fungal community: Its organization and role in the ecosystem. pp. 201232in Carroll, G.C.; and Wicklow, D.T. (Eds) The fungal community: Its organization and role in the ecosystem. New York, Marcel Dekker.Google Scholar
Costa, J.M., Corey, A., Hayes, P.M., Jobet, C., Kleinhofs, A., Kopisch-Obusch, A., Kramer, S.F., Kudrna, D., Li, M., Riera-Lizarazu, O., Sato, K., Szucs, P., Toojinda, T., Vales, M.I. and Wolfe, R.I. (2001) Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population. Theoretical and Applied Genetics 103, 415424.CrossRefGoogle Scholar
Dawson, I.K., Chalmers, K.J., Waugh, R. and Powell, W. (1993) Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Molecular Ecology 2, 151159.CrossRefGoogle ScholarPubMed
Doll, H. and Brown, A.H.D. (1979) Hordein variation in wild (Hordeum spontaneum) and cultivated barley (Hordeum vulgare). Canadian Journal of Genetics and Cytology 21, 391404.CrossRefGoogle Scholar
Evans, L.T. (1993) The domestication of crop plants. pp. 62112in Crop evolution, adaptation, and yield. Cambridge, Cambridge University Press.Google Scholar
Forster, B.P., Russell, J.R., Ellis, R.P., Handley, L.L., Robinson, D., Hackett, C.A., Nevo, E., Waugh, R., Gordon, D.C., Keith, R. and Powell, W. (1997) Locating genotypes and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species. New Phytologist 137, 141147.CrossRefGoogle Scholar
Gopher, A., Abbo, S. and Lev-Yadun, S. (2002) The ‘when’, the ‘where’ and the ‘why’ of the Neolithic revolution in the Levant. Documenta Praehistorica 28, 4962.CrossRefGoogle Scholar
Griffin, D.M. (1972) Ecology of soil fungi. London, Chapman & Hall.Google Scholar
Grishkan, I., Nevo, E., Wasser, S.P. and Beharav, A. (2003) Adaptive spatiotemporal distribution of soil microfungi in ‘Evolution Canyon’ II, Lower Nahal Keziv, western Upper Galilee, Israel. Biological Journal of the Linnean Society 78, 527539.CrossRefGoogle Scholar
Hackett, C.A., Meyer, R.C. and Thomas, W.T.B. (2001) Multi-trait QTL mapping in barley using multivariate regression. Genetical Research 77, 95106.CrossRefGoogle ScholarPubMed
Ivandic, V., Hackett, C.A., Nevo, E., Keith, R., Thomas, W.T.B. and Forster, B.P. (2002) Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Molecular Biology 48, 511527.CrossRefGoogle ScholarPubMed
Jui, P.Y., Choo, T.M., Ho, K.M., Konishi, T. and Martin, R.A. (1997) Genetic analysis of a two-row by six-row cross of barley using doubled haploid lines. Theoretical and Applied Genetics 94, 549556.CrossRefGoogle Scholar
Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. and Schulman, A.H. (2000) Genome-evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences, USA 97, 66036607.CrossRefGoogle ScholarPubMed
Kandemir, N., Jones, B.L., Wesenberg, D.M., Ullrich, S.E. and Kleinhofs, A. (2000) Marker assisted analysis of three grain yield QTL in barley (Hordeum vulgare L.) using near isogenic lines. Molecular Breeding 6, 157167.CrossRefGoogle Scholar
Kicherer, S., Backes, G., Walther, U. and Jahoor, A. (2000) Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 100, 881888.CrossRefGoogle Scholar
Kjaer, B. and Jensen, J. (1996) Quantitative trait loci for grain yield and yield components in a cross between a six-rowed and a two-rowed barley. Euphytica 90, 3948.CrossRefGoogle Scholar
Lev-Yadun, S. (2001) Aposematic (warning) coloration associated with thorns in higher plants. Journal of Theoretical Biology 210, 385388.CrossRefGoogle ScholarPubMed
Mano, Y., Kawasaki, S., Takaiwa, F. and Komatsuda, T. (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ by ‘Kanto Nakate Gold’ using a simple and efficient amplified fragment-length polymorphism system. Genome 44, 284292.CrossRefGoogle ScholarPubMed
Marquez-Cedillo, L.A., Hayes, P.M., Kleinhofs, A., Legge, W.G., Rossnagel, B.G., Sato, K., Ullrich, S.E. and Wesenberg, D.M. (2001) QTL analysis of agronomic traits in barley based on the doubled haploid progeny of two elite North American varieties representing different germplasm groups. Theoretical and Applied Genetics 103, 625637.CrossRefGoogle Scholar
Mather, D.E., Tinker, N.A., LaBerge, D.E., Edney, M., Jones, B.L., Rossnagel, B.G., Legge, W.G., Briggs, K.G., Irvine, R.B., Falk, D.E. and Kasha, K.J. (1997) Regions of the genome that affect grain and malt quality in North American two-row barley. Crop Science 37, 544554.CrossRefGoogle Scholar
McLeod, H.L. (2001) Pharmacogenetics: more than skin deep. Nature Genetics 29, 247248.CrossRefGoogle ScholarPubMed
Nevo, E. (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. pp. 1943in Shewry, P.R. (Ed.) Barley: Genetics, biochemistry, molecular biology and biotechnology. Wallingford, CAB International.Google Scholar
Nevo, E. (1998) Genetic diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ. Genetic Resources and Crop Evolution 45, 355370.CrossRefGoogle Scholar
Nevo, E. (2001) Evolution of genome–phenome diversity under environmental stress. Proceedings of the National Academy of Sciences, USA 98, 62336240.CrossRefGoogle ScholarPubMed
Nevo, E. and Beiles, A. (1988) Genetic parallelism of protein polymorphism in nature: Ecological test of the neutral theory of molecular evolution. Biological Journal of the Linnean Society 35, 229245.CrossRefGoogle Scholar
Nevo, E., Zohary, D., Brown, A.H.D. and Haber, M. (1979) Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33, 815833.Google ScholarPubMed
Nevo, E., Beiles, A., Storch, N., Doll, H. and Andersen, B. (1983) Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theoretical and Applied Genetics 64, 123132.CrossRefGoogle ScholarPubMed
Nevo, E., Beiles, A. and Zohary, D. (1986) Genetic resources of wild barley in the Near East: structure, evolution and application in breeding. Biological Journal of the Linnean Society 27, 355380.CrossRefGoogle Scholar
Owuor, E.D., Fahima, T., Beharav, A., Korol, A. and Nevo, E. (1999) RAPD divergence caused by microsite edaphic selection in wild barley. Genetica 105, 177192.CrossRefGoogle ScholarPubMed
Pakniyat, H., Powell, W., Baird, E., Handley, L.L., Robinson, D., Scrimgeour, C.M., Nevo, E., Hackett, C.A., Caligari, P.D.S. and Forster, B.P. (1997) AFLP variation in wild barley (Hordeum spontaneum C. Koch) with reference to salt tolerance and associated ecogeography. Genome 40, 332341.CrossRefGoogle ScholarPubMed
Petersen, L., Ostergard, H. and Giese, H. (1994) Genetic diversity among wild and cultivated barley as revealed by RFLP. Theoretical and Applied Genetics 89, 676681.CrossRefGoogle ScholarPubMed
Pritchard, J.K., Stephens, M., Rosenberg, N.A. and Donnelly, P. (2000) Association mapping in structured populations. American Journal of Human Genetics 67, 170181.CrossRefGoogle ScholarPubMed
Qi, X., Niks, R.E., Stam, P. and Lindhout, P. (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theoretical and Applied Genetics 96, 12051215.CrossRefGoogle Scholar
Risch, N.J. (2000) Searching for genetic determinants in the new millennium. Nature 405, 847856.CrossRefGoogle ScholarPubMed
Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A. and Allard, R.W. (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosomal location and population dynamics. Proceedings of the National Academy of Sciences, USA 81, 80148018.CrossRefGoogle ScholarPubMed
Salamini, F., Özkan, H., Brandolini, A., Schäfer-Pregl, R. and Martin, W. (2002) Genetics and geography of wild cereal domestication in the Near East. Nature Reviews Genetics 3, 429441.CrossRefGoogle ScholarPubMed
Salvo-Garrido, H., Laurie, D.A., Jaffé, B. and Snape, J.W. (2001) An RFLP map of diploid Hordeum bulbosum L. and comparison with maps of barley (H. vulgare L.) and wheat (Triticum aestivum L.) Theoretical and Applied Genetics 103, 869880.CrossRefGoogle Scholar
Spaner, D., Rossnagel, B.G., Legge, W.G., Scoles, G.J., Eckstein, P.E., Penner, G.A., Tinker, N.A., Briggs, K.G., Falk, D.E., Afele, J.C., Hayes, P.M. and Mather, D.E. (1999) Verification of a quantitative trait locus affecting agronomic traits in two-row barley. Crop Science 39, 248252.CrossRefGoogle Scholar
Tanksley, S.D. (1993) Mapping polygenes. Annual Review of Genetics 27, 205233.CrossRefGoogle ScholarPubMed
Teulat, B., Merah, O., Souyris, I. and This, D. (2001) QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theoretical and Applied Genetics 103, 774787.CrossRefGoogle Scholar
Tinker, N.A., Mather, D.E., Rossnagel, B.G., Kasha, K.J., Kleinhofs, A., Hayes, P.M., Falk, D.E., Ferguson, T., Shugar, L.P., Legge, W.G., Irvine, R.B., Choo, T.M., Briggs, K.G., Ullrich, S.E., Franckowiak, J.D., Blake, T.K., Graf, R.J., Dofing, S.M., Saghai Maroof, M.A., Scoles, G.J., Hoffman, D., Dahleen, L.S., Kilian, A., Chen, F., Biyashev, R.M., Kudrna, D.A. and Steffenson, B.J. (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Science 36, 10531062.CrossRefGoogle Scholar
Turpeinen, T., Kulmala, J. and Nevo, E. (1999) Genome size variation in Hordeum spontaneum populations. Genome 42, 10941099.CrossRefGoogle ScholarPubMed
Turpeinen, T., Tenhola, T., Manninen, O., Nevo, E. and Nissila, E. (2001) Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Molecular Ecology 10, 15771591.CrossRefGoogle ScholarPubMed
Van Rijn, C.P.E., Heersche, I., Van Berkel, Y.E.M., Nevo, E., Lambers, H. and Poorter, H. (2000) Growth characteristics in Hordeum spontaneum populations from different habitats. New Phytologist 146, 471481.CrossRefGoogle Scholar
Vicient, C.M., Suoniemi, A., Anamthawat-Jonsson, K., Tanskanen, J., Beharav, A., Nevo, E. and Schulman, A.H. (1999) Retrotransposon BARE -1 and its role in genome evolution in the genus Hordeum. Plant Cell 11, 17691784.CrossRefGoogle ScholarPubMed
Volis, S., Mendlinger, S. and Ward, D. (2002) Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133, 131138.CrossRefGoogle ScholarPubMed
Yasseen, B.T. and Al-Maamari, B.K.S. (1995) Further evaluation of the resistance of black barley to water stress: Preliminary assessment for selecting drought resistant barley. Journal of Agronomy and Crop Science 174, 919.CrossRefGoogle Scholar
Zohary, D. and Hopf, M. (2000) Domestication of plants in the old world (3rd edition). Oxford, Oxford University PressGoogle Scholar