Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T04:25:28.875Z Has data issue: false hasContentIssue false

‘Dust seeds’ with undifferentiated embryos and their germination in mycoheterotrophic Monotropoideae (Ericaceae)

Published online by Cambridge University Press:  24 November 2020

Jerry M. Baskin
Affiliation:
Department of Biology, University of Kentucky, Lexington, KY40506-0225, USA
Carol C. Baskin*
Affiliation:
Department of Biology, University of Kentucky, Lexington, KY40506-0225, USA Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY40546-0312, USA
*
Author for Correspondence: Carol C. Baskin, E-mail: [email protected]

Abstract

‘Dust seeds’ with an undifferentiated (organless) embryo are known to be produced by mycoheterotrophic species (MH) in nine families of angiosperms. However, aside from the numerous studies on seed germination of orchids, relatively little is known about germination in MH families. In the Ericaceae, some degree of mycoheterotrophy (full, partial or initial) and dust seeds with an undifferentiated embryo occur in all species in the three tribes of Monotropoideae, the only subfamily of Ericaceae with this combination of characters. In most species, the seed is <0.90 mm in the greatest dimension, the endosperm is absent (Pityopus) or consists of few to many (30–40) cells, and the embryo is minute, consisting of as few as two cells in Monotropa. Germination in Monotropoideae is monopolar, with only the radicular pole of the embryo participating in germination. Thus, germination polarity differs from that of the dust seeds of orchids in which only the plumular pole of the embryo (protocorm) participates in germination. The dust seeds in Monotropoideae require the presence of fungi, either direct contact with a fungus or the presence of a diffusible substance therefrom, to germinate (symbiotic germination). Recently, representatives of the four genera of tribe Pyroleae have been successfully germinated asymbiotically in vitro. We present a broad overview of dust-size seeds in angiosperms and conclude that they should be subdivided into at least two major categories.

Type
Review Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abid, R, Kanwal, D and Qaiser, M (2014) Seed morphological studies on some monocot families (excluding Gramineae) and their phylogenetic implications. Pakistan Journal of Botany 46, 13091324.Google Scholar
Abid, R, Ather, A and Qaiser, M (2015) The seed atlas of Pakistan-XI. Urticaceae. Pakistan Journal of Botany 47, 987994.Google Scholar
Abid, R, Ather, A and Qaiser, M (2016) The seed atlas of Pakistan. Papaveraceae. Pakistan Journal of Botany 48, 10351044.Google Scholar
Abraham, V and Subramanyam, K (1965) Studies on seeds of various taxa of Utricularia occurring in West Bengal. Proceedings of the Indian Academy of Science – Section A. Part 3. Mathematics and Sciences 62, 97102.Google Scholar
Abreu, MEP and Garcia, QS (2005) Efeito da luz e da temperature na geminacao de sementes de quarto especies de Xyris L. (Xyridaceae) ocorrentes na Serra do Cipo, MG, Brasil. Acta Botanica Brasileiro 19, 149154.CrossRefGoogle Scholar
Akbari, RS and Azizian, D (2006) Seed morphology and seed coat sculpturing of Epilobium L. species (Onagraceae Juss.) from Iran. Turkish Journal of Botany 30, 435440.Google Scholar
Akçin, TA (2009) Seed coat morphology of some Turkish Campanula (Campanulaceae) species and its systematic implications. Biologia. Section Botany 64, 10891094.Google Scholar
Akçin, TA, Ozdener, Y and Akçin, A (2009) Taxonomic value of seed characters in orchids from Turkey. Belgium Journal of Botany 142, 124139.Google Scholar
Alçitepe, E (2010) Studies on seed morphology of Campanula L. section Quinqueloculares (Boiss.) Phitos (Campanulaceae) in Turkey. Pakistan Journal of Botany 42, 10751082.Google Scholar
Anderberg, A-L (1994) Atlas of seeds and small fruits of northwest-European plant species with morphological descriptions. Part 4. Resedaceae - Umbelliferae. Stockholm, Swedish Museum of Natural History.Google Scholar
APG-IV (Angiosperm Phylogeny Group) (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181, 120.CrossRefGoogle Scholar
Arditti, J and Ghani, AKA (2000) Tansley Review No. 110. Numerical and physical properties of orchid seeds and their biological implications. New Phytologist 145, 367421.CrossRefGoogle ScholarPubMed
Athugala, YS, Jayasuriya, KMGG, Gunaratne, AMTA and Baskin, CC (2016) Morphophysiological epicotyl dormancy in seeds of three Psychotria species from Sri Lanka: first record for Rubiaceae. Seed Science Research 26, 171181.CrossRefGoogle Scholar
Axelois, B (1987) The genus Lerchea (Rubiaceae). Blumea 32, 91114.Google Scholar
Ayano, M, Imaichi, R and Kato, M (2005) Developmental morphology of the Asian one-leaf plant, Monophyllaea glabra (Gerneriaceae) with emphasis on inflorescence morphology. Journal of Plant Research 118, 99109.CrossRefGoogle Scholar
Bakshi, TS (1959) Ecology and morphology of Pterospora andromedea. Botanical Gazette 120, 203217.CrossRefGoogle Scholar
Barreto, LC, Echternacht, L and Garcia, QS (2013) Seed coat sculpture in Comanthera (Eriocaulaceae) and its implications on taxonomy and phylogenetics. Plant Systematics and Evolution 299, 14611469.CrossRefGoogle Scholar
Barrios, D, Sánchez, JA, Flores, J and Jurado, E (2020) Seed traits and germination in the Cactaceae family: a review across the Americas. Botanical Sciences 98, 417440.CrossRefGoogle Scholar
Barthlott, W and Porembski, S (1996) Ecology and morphology of Blossfeldia liliputana (Cactaceae): a poikilohydric and almost astomate succulent. Botanica Acta 1996, 161166.CrossRefGoogle Scholar
Barthlott, W and Voit, G (1979) Mikromorphologie der Samenschalen und Taxonomi der Cactaceae: ein raster-elektronenmikroskopischer Überliek. Plant Systematics and Evolution 132, 205229.CrossRefGoogle Scholar
Barthlott, W, Große-Veldmann, B and Korotkova, N (2014) Orchid seed diversity. Englera 32, 1245.Google Scholar
Baskin, CC and Baskin, JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination (2nd edn). San Diego, Elsevier/Academic Press.Google Scholar
Baskin, CC and Baskin, JM (2018) Resolving the puzzle of Martin's broad embryo: a solution based on morphology, taxonomy and phylogeny. Perspectives in Plant Ecology, Evolution and Systematics 34, 6167.CrossRefGoogle Scholar
Berch, SM, Massicotte, HB and Tackaberry, LE (2005) Re-publication of a translation of ‘The vegetative organs of Monotropa hypopitys L.’ published by F. Kamienski in 1882, with an update on Monotropa mycorrhizas. Mycorrhiza 15, 323332.CrossRefGoogle ScholarPubMed
Berggren, G (1981) Atlas of seeds and small fruits of northwest-European plant species with morphological descriptions. Part 3. Salicaceae – Cruciferae. Stockholm, Swedish Museum of Natural History.Google Scholar
Bidartondo, MI and Bruns, TD (2005) On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Molecular Ecology 14, 15491560.CrossRefGoogle ScholarPubMed
Birch, WR (1981) Morphology of germinating seeds of the seagrass Halophila spinulosa (R. Br.) Aschers. (Hydrocharitaceae). Aquatic Botany 11, 7990.CrossRefGoogle Scholar
Björkman, E (1960) Monotropa hypopitys L. – an epiparasite on tree roots. Physiologia Plantarum 13, 308327.CrossRefGoogle Scholar
Boesewinkel, FD (1989) Ovule and seed development in Droseraceae. Acta Botanica Neerlandica 38, 295311.CrossRefGoogle Scholar
Boesewinkel, FD and Bouman, F (1984) The seed: structure. pp. 567610 in Johri, BM (Ed.) Embryology of angiosperms. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Bojnanský, V and Fargašová, A (2007) Atlas of seeds and fruits of central and east-European flora. The Carpathian Mountains region. Dordrecht, Springer.Google Scholar
Bouman, F and de Lange, A (1982) Micromorphology of the seed coats in Begonia section Squamibegonia Warb. Acta Botanica Neerlandica 31, 297305.CrossRefGoogle Scholar
Bowler, R, Massicotte, HB and Fredeen, AL (2017) Combining leaf gas-exchange and stable carbon isotopes to assess mycoheterotrophy in three species of Pyroleae. Botany 95, 10711080.CrossRefGoogle Scholar
Brechú-Franco, AE, Jurado-González, Y, Laguna-Hernández, G, Gómez-Campos, A and Fonseca-Juárez, RM (2018) Germination capacity and seedling survival of Moussonia deppeana (Gesneriaceae) from the montane cloud forests. Research Journal of Botany 13, 1118.Google Scholar
Bremer, B (1984) The genus Steenisia (Rubiaceae) and its taxonomic position. Nordic Journal of Botany 4, 333345.CrossRefGoogle Scholar
Bremer, B (1989) The genus Argostemma (Rubiaceae – Argostemmateae) in Borneo. Annals of the Missouri Botanical Garden 76, 749.CrossRefGoogle Scholar
Brooks, RE and Kuhn, C (1986) Seed morphology under SEM and light microscopy in Kansas Juncus (Juncaceae). Brittonia 38, 201209.CrossRefGoogle Scholar
Brouwer, W and Stählin, A (1975) Handbuch der Samenkunde fur andwirtschaft, Gartenbau und Forstwirtschaft. Frankfurt, DLG-Verlag.Google Scholar
Bruns, TD and Read, DJ (2000) In vitro germination of nonphotosynthetic, myco-heterotrophic plants stimulated by fungi isolated from the adult plants. New Phytologist 148, 335342.CrossRefGoogle Scholar
Buss, CC, Lammers, TG and Wise, RR (2001) Seed coat morphology and its systematic implications in Cyanea and other genera of Lobelioideae (Campanulaceae). American Journal of Botany 88, 13011308.CrossRefGoogle Scholar
Callejas, R (1990) Studies in neotropical Piperaceae. II. Four new species and a new combination from Columbia and Peru. Brittonia 42, 7082.CrossRefGoogle Scholar
Camp, WH (1940) Aphyllous forms in Pyrola. Bulletin of the Torrey Botanical Club 67, 453465.CrossRefGoogle Scholar
Carlson, MC (1940) Formation of the seed of Cypripedium parviflorum. Botanical Gazette 102, 295301.CrossRefGoogle Scholar
Castillo, G, Márquez-Guzmán, J and Collazo-Ortega, M (2013) Seed germination and early development in seedlings of Noveloa coulteriana (Podostemaceae). Aquatic Botany 109, 2530.CrossRefGoogle Scholar
Chaudhary, B, Chattopadhyay, P and Banerjee, N (2014) Modulations in seed micromorphology reveal signature of adaptive species-diversification in Dendrobium (Orchidaceae). Open Journal of Ecology 4, 3342.CrossRefGoogle Scholar
Chen, J, Liu, SS, Kohler, A, Yan, B, Luo, HM, Chen, XM and Guo, SX (2017) iTRAA and RNA-Seq analyses provide new insights into regulation mechanism of symbiotic germination of Dendrobium officinale seeds (Orchidaceae). Proteome 16, 21742187.Google Scholar
Cho, JS and Lee, CH (2017) Dormancy and germination characteristics of alpine modest primrose (Primula modesta var. hannasanensis T. Yamaz.) seeds. Korean Journal of Plant Research 30, 372377 (in Korean with English abstract and captions to tables and figures).Google Scholar
Christoph, H (1921) Untersuchungen uber die mykotrophen Verhaltnisse der ‘Ericales’ und die Keimung von Pirolaceen. Beihefte zum Botanischen Centralblatt 38, 115157.Google Scholar
Conran, JG and Denton, MD (1996) Germination in the Western Australian pitcher plant Cephalotus follicularis and its unusual early seedling development. Western Australian Naturalist 21, 3742.Google Scholar
Copeland, HF (1933) The development of seeds in certain Ericales. American Journal of Botany 20, 513517.CrossRefGoogle Scholar
Copeland, HF (1937) The reproductive structures of Pleuricospora. Madroño 4, 140.Google Scholar
Copeland, HF (1938) The structure of Allotropa. Madroño 4, 137168.Google Scholar
Copeland, HF (1939) The structure of Monotropsis and the classification of the Monotropoideae. Madroño 5, 105119.Google Scholar
Copeland, HF (1947) Observations on the structure and classification of the Pyroleae. Madroňo 9, 3364.Google Scholar
Corner, EJH (1976) The seeds of dicotyledons (two volumes). Cambridge, Cambridge University Press.Google Scholar
Correa, MD and Silva, TRS (2005) Drosera (Droseraceae). Flora Neotropica Monograph 96. New York, The New York Botanical Garden Press.Google Scholar
Costea, M, El Miari, H, Laczkó, L, Fekete, R, Molnár, AV, Lovas-Kiss, Á and Green, AJ (2019) The effect of gut passage by waterbirds on the seed coat and pericarp of diaspores lacking ‘external flesh’: evidence for widespread adaptation to endozoochory in angiosperms. PLoS ONE 14, e0226551.CrossRefGoogle Scholar
Crocker, CW (1866) Notes on the germination of certain species of Cyrtandreae. Journal of the Linnean Society of London 5, 6567.Google Scholar
Curtiss, CC (1893) An examination of the seeds of some native orchids. Bulletin of the Torrey Botanical Club 20, 183192. + plates CL-CLII.CrossRefGoogle Scholar
Davitashvili, N and Karrer, G (2010) Taxonomic importance of seed morphology in Gentiana (Gentianaceae). Botanical Journal of the Linnean Society 162, 101115.CrossRefGoogle Scholar
Dearnaley, JDW and Bougoure, JJ (2010) Isotopic and molecule evidence for saprotrophic Marasmiaceae mycobionts in rhizomes of Gastrodia sesamoides. Fungal Ecology 3, 288294.CrossRefGoogle Scholar
Degtjareva, G, Casper, J, Hellwig, F and Sokoloff, D (2004) Seed morphology in the genus Pinguicula (Lentibulariaceae) and its relation to taxonomy and phylogeny. Botanische Jahrbucher fur Systematik Pflanzengeschichte und Pflansengeographie 125, 431452.CrossRefGoogle Scholar
Degtjareva, G, Casper, J, Hellwig, F, Schmidt, AR, Steiger, J and Sokoloff, DD (2006) Morphology and nrITS phylogeny of the genus Pinguicula L. (Lentibulariaceae), with special attention to embryo evolution. Plant Biology 8, 778790.CrossRefGoogle Scholar
de Lange, A and Bouman, F (1986) Micromorphology of the seeds in Begonia section Solananthera A. DC. Acta Botanica Neerlandica 35, 489495.CrossRefGoogle Scholar
de Lange, A and Bouman, F (1999) Seed micromorphology of Neotropical begonias. Smithsonian Contributions to Botany. Number 10. Washington, DC, Smithsonian Institution Press.CrossRefGoogle Scholar
Delprete, PG (1999) Rodeletieae (Rubiaceae) – Part I (Rustia, Tresanthera, Condaminea, Picardaea, Pogonopus, Chimarrhis, Dioicodendron, Molopanthera, Dolichodelphys, and Parachimarrhis). Flora Neotropica Monograph 77. New York, The New York Botanical Garden Press.Google Scholar
Diantina, S, McGill, C, Millner, J, Nadarajan, J, Pritchard, HW and McCormick, AC (2020) Comparative seed morphology of tropical and temperate orchid species with different growth habits. Plants 9, 161.CrossRefGoogle ScholarPubMed
Dixon, KW and Pate, JS (1980) Biology of west Australian tuberous Drosera. Carnivorous Plant Newsletter 9, 912, 23.Google Scholar
Dong, L-N, Wang, H, Worthley, AH, Li, A-Z and Lu, L (2015) Fruit and seed morphology in some representative genera of tribe Rhinantheae sensu lato (Orobanchaceae) and related taxa. Plant Systematics and Evolution 301, 479500.CrossRefGoogle Scholar
Douglas, AE (2008) Tansley review. Conflict, cheats and the persistence of symbioses. New Phytologist 177, 849858.CrossRefGoogle Scholar
Doyel, BE and Goss, LM (1941) Some details of the reproductive structures of Sarcodes. Madroño 6, 17.Google Scholar
Dwyer, TP (1983) Seed structure of carnivorous plants. Carnivorous Plant Newsletter 12, 823.Google Scholar
Elisens, WJ and Tomb, AS (1983) Seed morphology in New World Antirrhineae (Scrophulariaceae): systematic and phylogenetic implications. Plant Systematics and Evolution 142, 2347.CrossRefGoogle Scholar
Erickson, TE, Barrett, RL, Merritt, DJ and Dixon, KW (2016) Pilbara seed atlas and field guide. Clayton South, CSIRO Publishing.CrossRefGoogle Scholar
Eriksson, O and Kainulainen, K (2011) The evolutionary ecology of dust seeds. Perspectives in Plant Ecology, Evolution and Systematics 13, 7387.CrossRefGoogle Scholar
Ertter, B (1986) The Juncus triformis complex. Memoirs of the New York Botanical Garden 39, 190.Google Scholar
Fagúndez, J and Izco, J (2003) Seed morphology of Erica L. sect. Chlorocodon Bentham. Acta Botanica Gallica 150, 401410.CrossRefGoogle Scholar
Fagúndez, J and Izco, J (2004a) Seed morphology of Calluna Salisb. (Ericaceae). Acta Botanica Malacitana 29, 215220.CrossRefGoogle Scholar
Fagúndez, J and Izco, J (2004b) Seed morphology of Daboecia (Ericaceae). Belgium Journal of Botany 137, 188192.Google Scholar
Fagúndez, J and Izco, J (2004c) Taxonomic value of seed characters in the Erica tetralix L. group (Ericaceae). Plant Biosystems 138, 207213.CrossRefGoogle Scholar
Fagúndez, J and Izco, J (2008) Seed morphology of two distinct European species of Erica L. (Ericaceae). Acta Botanica Malacitana 33, 4755.CrossRefGoogle Scholar
Fagúndez, J and Izco, J (2009) Seed morphology of Erica L. sect. Loxomeria Salisb. ex Benth., sect. Eremocallis Salisb. ex Benth. and sect. Brachycallis I. Hensen, and its systematic implications. Plant Biosystems 143, 328336.CrossRefGoogle Scholar
Fagúndez, J and Izco, J (2011a) Seed morphology and anatomy of the Mediterranean petramerous species of Erica (Ericaceae). Turkish Journal of Botany 35, 643651.Google Scholar
Fagúndez, J and Izco, J (2011b) Seed morphology and systematics of the European species of Erica L. sect. Gypsocallis Salisb. (Ericaceae). Plant Biosystems 145, 182190.CrossRefGoogle Scholar
Fagúndez, J, Juan, J, Fernández, I, Pastor, J and Izco, J (2010) Systematic relevance of seed coat anatomy in the European heathers (Ericeae, Ericaceae). Plant Systematics and Evolution 284, 6576.CrossRefGoogle Scholar
Fan, X-L, Chomicki, G, Hao, K, Liu, Q, Xiong, Y-Z, Renner, SS, Gao, J-Y and Huang, S-Q (2020) Transitions between the terrestrial and epiphytic habit drove the evolution of seed-aerodynamic traits in orchids. The American Naturalist 195, 275283.CrossRefGoogle ScholarPubMed
Farooq, M (1964) Studies in the Lentibulariaceae. I. The embryology of Utricularia stellaris Linn. f. var. inflexa Clarke. Part 2. Microsporangium, male gametophyte, fertilization, endosperm, embryo and seed. Proceedings of the National Institute of Sciences of India 30, 280299.Google Scholar
Figura, T, Tylová, E, Šoch, J, Selosse, M-A and Ponert, J (2019) In vitro axenic germination and cultivation of mixotrophic Pyroloideae (Ericaceae) and their post-germination ontogenetic development. Annals of Botany 123, 625639.CrossRefGoogle ScholarPubMed
Flores-Enríquez, V, Castillo, G and Collazo-Ortega, M (2019) Experimental seed germination for ex situ conservation of Mexican Podostemaceae. Botanical Sciences 97, 413422.CrossRefGoogle Scholar
Fogliani, B, Gâteblé, G, Villegente, M, Fabre, I, Klein, N, Anger, N, Baskin, CC and Scutt, CP (2017) The morphophysiological dormancy in Amborella trichopoda seeds is a pleisiomorphic trait in angiosperms. Annals of Botany 119, 581590.Google ScholarPubMed
Ford, KA (2014) Centrolepidaceae. pp. 124 in Breitwieser, I; Brownsey, PJ; Heenan, PB and Wilton, AD (Eds) Flora of New Zealand – seed plants. Fascicle 2. Lincoln, Manaaki Whenua Press.Google Scholar
Francke, H-L (1934) Beitrage zur Kenntis der Mykorrhiza von Monotropa hypopitys L. Analyse und Synthese der Symbiose. Flora 129, 152.Google Scholar
Fraser, L (1931) An investigation of Lobelia gibbosa and Lobelia dentata. I. Mycorrhiza, latex system and germination biology. Proceedings of the Linnean Society of New South Wales 56, 497525.Google Scholar
Frattaroli, AR, De Martino, L, De Cecco, V, Catoni, R, Varone, L, De Santo, M and Gratani, L (2013) Seed germination capability of four endemic species in the Central Apennines (Italy): relationships with seed size. Lazarao 34, 4353.CrossRefGoogle Scholar
Freudenstein, JV (1999) Relationships and character transformation in Pyroloideae (Ericaceae) based on ITS sequences, morphology and development. Systematic Botany 24, 398408.CrossRefGoogle Scholar
Friedman, WE, Bachelier, JB and Hormaza, JI (2012) Embryology in Trithuria submersa (Hydatellaceae) and relationships between embryo, endosperm, and perisperm in early-diverging flowering plants. American Journal of Botany 99, 10831095.CrossRefGoogle ScholarPubMed
Friis, EM, Crane, PR, Pedersen, KR, Stampanoni, M and Marone, F (2015) Exceptional preservation of tiny embryos documents seed dormancy in early angiosperms. Nature 528, 551555.CrossRefGoogle ScholarPubMed
Fukuhara, T (1999) Seed and funicle morphology of Fumariaceae-Fumarioideae: systematic implications and evolutionary patterns. International Journal of Plant Sciences 160, 151180.CrossRefGoogle Scholar
Furman, TE and Trappe, JM (1971) Phylogeny and ecology of mycotrophic achlorophyllous angiosperms. The Quarterly Review of Biology 46, 219225.CrossRefGoogle Scholar
Gama-Arachchige, NS, Baskin, JM, Geneve, RL and Baskin, CC (2013) Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gaps complexes. Annals of Botany 112, 6984.CrossRefGoogle ScholarPubMed
Gamboa-deBuen, A and Orozco-Segovia, A (2008) Hydropyllaceae seeds and germination. Seed Science and Biotechnology 2, 1528.Google Scholar
Garcia, QS and Oliveira, PG (2007) Germination patterns and seed longevity of monocotyledons from the Brazilian Campos Rupestres. Seed Science and Biotechnology 1, 3541.Google Scholar
Gardes, M (2002) An orchid-fungus marriage – physical promiscuity, conflict and cheating. New Phytologist 154, 114.CrossRefGoogle Scholar
Geneve, RL, Baskin, CC, Baskin, JM, Jayasuriya, KMGG and Gama-Arachchige, NS (2018) Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Science Research 28, 186191.CrossRefGoogle Scholar
Ghimire, B, Choi, GE, Lee, H, Heo, K and Jeong, MJ (2017) Morphological studies on seeds of Scrophulariaceae s.l. and their systematic significance, pp. 199231 in Jimenez-Lopez, JC (Ed.) Advances in seed biology. Available at: https://intechopen.com/books/advances-in-seed-biology.Google Scholar
Giorni, VT and Bicalho, EM (2018) Seed germination of Xyris spp. from Brazilian campo rupestre is not associated to geographic distribution and microhabitat. Flora 238, 102109.CrossRefGoogle Scholar
Graham, SA and Graham, A (2014) Ovary, fruit, and seed morphology of the Lythraceae. International Journal of Plant Sciences 175, 202240.CrossRefGoogle Scholar
Groenendijk, JP, Bouman, F and Cleef, AM (1996) An exploratory study on seed morphology of Miconia Ruiz & Pavón (Melastomataceae), with taxonomic and ecological implications. Acta Botanica Neerlandica 45, 323344.CrossRefGoogle Scholar
Grushvitzky, IV (1967) After-ripening of seeds of primitive tribes of angiosperms, conditions and peculiarities, pp. 329336 + figures 1–8 in Borris, H (Ed.) Physiologic, Okologie und Biochemieder der Keimung, vol. 1. Greifswald, Ernst-Moritz-Arnst Universitat.Google Scholar
Haba, SR (2015) Conservation of Begonia germplasm through seeds: characterization of germination and vigor in different species. MS thesis, The Ohio State University, Columbus.Google Scholar
Hamann, U, Kaplan, K and Rűbsamen, T (1979) Uber die Samenschalenstruktur der Hydatellaceae (Monocotyledoneae) und die systematische Stellung von Hydatella filamentosa. Botanische Jahrbucher fur Systematik 100, 555563.Google Scholar
Hamashima, S (1978) Seed germination of three Lemna species. Journal of Japanese Botany 53, 2831 (in Japanese with English summary and captions to figures).Google Scholar
Hashimoto, Y, Fukukawa, S, Kunishi, A, Suga, H, Richard, F, Sauve, M and Selosse, M-A (2012) Mycoheterotrophic germination of Pyrola asarifolia dust seeds reveals convergences with germination in orchids. New Phytologist 195, 620630.CrossRefGoogle ScholarPubMed
Henderson, MW (1919) A comparative study of the structure and saprophytism of the Pyrolaceae and Monotropaceae with reference to their derivations from the Ericaceae. Contributions from the Botanical Laboratory of the University of Pennsylvania 5, 42109.Google Scholar
Hill, AW (1906) The morphology and seedling structure of the geophilous species of Peperomia, together with some views on the origin of monocotyledons. Annals of Botany 20, 395427. + plate XXIX.CrossRefGoogle Scholar
Hill, AW (1907) A revision of the geophilous species of Peperomia, with some additional notes on their morphology and seedling structure. Annals of Botany 21, 139160. + plate XV.CrossRefGoogle Scholar
Holm, T (1898) Pyrola aphylla: a morphological study. Botanical Gazette 25, 246254.Google Scholar
Hu, X-J, Liu, C, Li, A-R, Yang, X-Y and Baskin, C (2020) Effect of temperature and moist conditions on seed dormancy cycling of two sympatric limestone species, Begonia guishanensis and Paraisometrum mileense, in southern China. Seed Science Research 30, 2936.CrossRefGoogle Scholar
Hufford, L (1995) Seed morphology of Hydrangeaceae and its phylogenetic implications. International Journal of Plant Sciences 156, 555580.CrossRefGoogle Scholar
Hynson, NA and Bruns, TD (2009) Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proceedings of the Royal Society B 276, 40534059.CrossRefGoogle ScholarPubMed
Hynson, NA, Preiss, K, Gebauer, G and Bruns, TD (2009) Isotopic evidence of full and partial myco-heterotrophy in the plant tribe Pyroleae (Ericaceae). New Phytologist 182, 719726.CrossRefGoogle Scholar
Hynson, NA, Jolles, D and Madsen, TP (2012a) A case of Pyrola plantlets with pricky palates leads to new insights on mycoheterotropic seedlings and the fungi that feed them. New Phytologist 195, 503506.CrossRefGoogle Scholar
Hynson, NA, Mambelli, S, Amend, AS and Dawson, TE (2012b) Measuring carbon gains from fungal networks in understory plants from the tribe Pyroleae (Ericaceae): a field manipulation and stable isotope approach. Oecologia 169, 307317.CrossRefGoogle Scholar
Hynson, NA, Madsen, TP, Selosse, M-A, Roy, M and Gebauer, G (2013a) The physiological ecology of mycoheterotrophy, pp. 297342 in Merckx, VSFT (Ed.) Mycoheterotrophy: the biology of plants living on fungi. New York, Springer.CrossRefGoogle Scholar
Hynson, NA, Weiß, M, Preiss, K, Gebauer, G and Treseder, KK (2013b) Fungal host specificity is not a bottleneck for the germination of Pyroleae species (Ericaceae) in a Bavarian forest. Molecular Ecology 22, 14731481.CrossRefGoogle Scholar
Hynson, NA, Bidartondo, ML and Read, DJ (2015) Are there geographic mosaics of mycorrhizal specificity and partial mycoheterotrophy? A case study in Moneses uniflora (Ericaceae). New Phytologist 208, 10031007.CrossRefGoogle Scholar
Hynson, NA, Schiebold, JM-I and Gebauer, G (2016) Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi. Annals of Botany 118, 467479.CrossRefGoogle ScholarPubMed
Iles, WJD, Rudall, PJ, Sokoloff, DD, Remizowa, MV, Macfarlane, TD, Logacheva, MD and Graham, SW (2012) Molecular phylogenetics of Hydatellaceae (Nymphaeales): sexual-system homoplasy and a new sectional classification. American Journal of Botany 99, 663674.CrossRefGoogle Scholar
Imaichi, R, Nagumo, S and Kato, M (2000) Ontogenetic anatomy of Streptocarpus grandis (Gesneriaceae) with implications for evolution of monophylly. Annals of Botany 86, 3746.CrossRefGoogle Scholar
Imaichi, R, Inokuchi, S and Kato, M (2001) Developmental morphology of one-leaf plant Monophyllaea singularis (Gesneriaceae). Plant Systematics and Evolution 229, 171185.CrossRefGoogle Scholar
Imhof, S (2007) Specialized colonization pattern in achlorophyllous Epirixanthes spp. (Polygonaceae). Plant Biology 9, 786792.CrossRefGoogle Scholar
Imhof, S and Sainge, MN (2008) Ontogeny of the mycoheterotrophic species Afrothismia hydra (Burmanniaceae). Botanical Journal of the Linnean Society 157, 3136.CrossRefGoogle Scholar
Imhof, S, Massicotte, HB, Melville, LH and Peterson, RL (2013) Subterranean morphology and mycorrhizal structures, pp. 157214 in Merckx, VSFT (Ed.) Mycoheterotrophy: the biology of plants living on fungi. New York, Springer.CrossRefGoogle Scholar
Irving, LJ and Cameron, DD (2009) You are what you eat: interactions between root parasitic plants and their hosts. Advances in Botanical Research 50, 87138.CrossRefGoogle Scholar
Jacquemyn, H, Waud, M and Brys, R (2018) Mycorrhizal divergence and selection against immigrant seeds in forest and dune populations of the partially mycoheterotrophic Pyrola rotundifolia. Molecular Ecology 27, 52285237.CrossRefGoogle ScholarPubMed
Joel, DM and Bar, H (2013) The seed and seedling, pp. 147165 in Joel, DM; Gessel, J and Musselman, LJ (Eds) Parasitic Orobanchaceae. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Johansson, VA and Eriksson, O (2013) Recruitment limitation, germination of dust seeds, and early development of underground seedlings in six Pyroleae species. Botany 91, 1724.CrossRefGoogle Scholar
Johansson, VA, Műller, G and Eriksson, O (2014) Dust seed production and dispersal in Swedish Pyroleae species. Nordic Journal of Botany 32, 209214.CrossRefGoogle Scholar
Johansson, VA, Mikusinski, S, Ekblad, A and Eriksson, O (2015) Partial mycoheterotrophy in Pyroleae: nitrogen and carbon isotope signatures during development from seedling to adult. Oecologia 177, 203211.CrossRefGoogle ScholarPubMed
Johansson, VA, Bahram, M, Tedersoo, L, Kõljalg, U and Eriksson, O (2017) Specificity of fungal associations of Pyroleae and Monotropa hypopitys during germination and seedling development. Molecular Ecology 26, 25912604.CrossRefGoogle ScholarPubMed
Johri, BM, Ambegaokar, KB and Srivastava, PS (eds) (1992a) Comparative embryology of angiosperms (2 volumes). Pyrolaceae, p. 727. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Johri, BM, Ambegaokar, KB and Srivastava, PS (eds) (1992b) Comparative embryology of angiosperms (2 volumes). Buddleiaceae, pp. 715716. Berlin, Springer-Verlag.CrossRefGoogle Scholar
Jolles, DD and Wilson, CA (2014) Pyrola crypta: a Pacific Northwest species belonging to the Pyrola picta species complex. Taxon 63, 789800.CrossRefGoogle Scholar
Juan, R, Pastor, J and Fernández, I (1999) Morphological and anatomical studies of Linaria species from South-west Spain: seeds. Annals of Botany 84, 1119.CrossRefGoogle Scholar
Juan, R, Pastor, J and Fernández, I (2000) SEM and light microscope observations of fruit and seeds in Scrophulariaceae from Southwest Spain and their systematic significance. Annals of Botany 86, 323338.CrossRefGoogle Scholar
Kainulainen, K, Persson, C, Eriksson, T and Bremer, B (2010) Molecular systematics and morphological character evolution of the Condamineeae (Rubiaceae). American Journal Botany 97, 19611981.CrossRefGoogle Scholar
Kanwal, D, Abid, R and Qaiser, M (2009) The seed atlas of Pakistan-I. Aizoaceae. Pakistan Journal of Botany 41, 15571564.Google Scholar
Kanwal, D, Abid, R and Qaiser, M (2012) The seed atlas of Pakistan-VI. Caryophyllaceae. Pakistan Journal of Botany 44, 407424.Google Scholar
Kasem, WT, Ghareeb, A and Marwa, E (2011) Seed morphology and seed coat sculpturing of 32 taxa of family Brassicaceae. Journal of American Science 7, 166178.Google Scholar
Kataeva, TM, Prokopyev, AS, Akinia, AA and Chernova, OD (2015) Seed morphology of some species in the family Gentianaceae. Biosciences Biotechnology Research Asia 12, 2287–2293.CrossRefGoogle Scholar
Katayama, N, Kato, M, Nishiuchi, T and Yamada, T (2011) Comparative anatomy of embryogenesis in three species of Podostemaceae and evolution of the loss of embryonic shoot and root meristems. Evolution and Development 13, 333342.CrossRefGoogle ScholarPubMed
Kausik, SB (1938) Pollen development and seed formation in Utricularia coerulea L. Beihefte zum Botanischen Centralblatt. Morphologie und Physiologie der Pflanzen 58A, 365378.Google Scholar
Khafagi, AAF, El-Ghamery, AA, Ghaly, ON and Ragab, OG (2018) Fruit and seed morphology of some species of Solanaceae. Taeckholmia 38, 123140.CrossRefGoogle Scholar
Khalik, KA and van der Maesen, LJG (2002) Seed morphology of some tribes of Brassicaceae (implications for taxonomy and species identification for the flora of Egypt). Blumea 47, 363383.Google Scholar
Khan, R (1954) A contribution to the embryology of Utricularia flexuosa Vahl. Phytomorphology 4, 80117.Google Scholar
Khosla, C, Shivanna, KR and Mohan Ram, HY (2000) Reproductive biology of Polypleurum stylosum (Podostemaceae). Aquatic Botany 67, 143154.CrossRefGoogle Scholar
Kiers, ET, Duhamel, M, Beesetty, Y, Mensah, JA, Franken, O, Verbruggen, E, Fellbaum, CR, Kowalchuk, GA, Hart, MM, Bago, A, Palmer, TM, West, SW, Vandenkoornhuyse, P, Jansa, J and Bücking, H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880882.CrossRefGoogle ScholarPubMed
Kirkbride, JH Jr., Gunn, CR and Weitzman, AL (2003) Fruits and seeds of genera in the subfamily Faboideae (Fabaceae), vol. II. Washington, DC, USA, United States Department of Agriculture. Agricultural Research Service Technical Bulletin 1890.Google Scholar
Kissling, J (2012) Taxonomy of Exochaenium and Lagenias: two resurrected genera of tribe Exaceae (Gentianaceae). Systematic Botany 37, 238253.CrossRefGoogle Scholar
Koch, L (1882) Die Entwicklung des Samens von Monotropa hypopitys L. Pringheim‘s Jahrbücher fur Wissenschaftliche Botanik Band XIII, Heft 2.Google Scholar
Koi, S, Werukamkul, P, Ampornpan, L-A and Kato, M (2012) Seedling development in Hanseniella, Hydrobryum and Thawatchaia (Podostemaceae), and implications on body plan evolution in the Hydrobryum clade. Plant Systematics and Evolution 298, 17551766.CrossRefGoogle Scholar
Kołodziejek, J, Patykowski, J and Wala, M (2019) Dormancy, germination, and sensitivity to salinity stress in five species of Potentilla (Rosaceae). Botany 97, 452462.CrossRefGoogle Scholar
Kondo, K, Segawa, M and Nehira, K (1978) Anatomical studies on seeds and seedlings of some Utricularia (Lentibulariaceae). Brittonia 30, 8995.CrossRefGoogle Scholar
Kral, R (1966a) Eriocaulaceae of continental North America north of Mexico. Sida 2, 285332.Google Scholar
Kral, R (1966b) Xyris (Xyridaceae) of the continental United States and Canada. Sida 2, 177260.Google Scholar
Kral, R (1978) A new species of Xyris (sect. Xyris) from Tennessee and northwestern Georgia. Rhodora 80, 444447.Google Scholar
Kranabetter, JM and MacKenzie, WH (2010) Contrasts among mycorrhizal plant guilds in foliar nitrogen concentration and δ15N along productivity gradients of a boreal forest. Ecosystems 13, 108117.CrossRefGoogle Scholar
Kraus, JE, Scatena, VL, Lewinger, ME, Uvo, K and Trench, S (1996) Morfologia externa e interna de quarto especies de Paepalanthus Kunth (Eriocaulaceae) em desenvovlvimetno pos-seminal. Boletim de Botanica da Universidade de São Paulo 15, 4553.Google Scholar
Krause, D and Weber, HC (1990) SEM observations on seeds of Striga spp. and Buchnera americana (Scrophulariaceae). Plant Systematics and Evolution 170, 257263.CrossRefGoogle Scholar
Kron, KA, Judd, WS, Stevens, PF, Crayn, DM, Anderberg, AA, Gadek, PA, Quinn, CJ and Luteyn, JL (2002) Phylogenetic classification of Ericaceae: molecular and morphological evidence. The Botanical Review 68, 335423.CrossRefGoogle Scholar
Kumazawa, M (1967) An experimental study on the seedling of Utricularia pilosa Makino. Phytomorphology 17, 494498.Google Scholar
Kuo, J, Long, WL and Coles, RG (1993) Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae). Australian Journal of Marine and Freshwater Research 44, 4357.CrossRefGoogle Scholar
Kurzweil, H (1993) Seed morphology in Southern African Orchidoideae (Orchidaceae). Plant Systematics and Evolution 185, 229247.CrossRefGoogle Scholar
Kvist, LP (1990) Revision of Heppiella (Gesneriaceae). Systematic Botany 15, 720735.CrossRefGoogle Scholar
Kvist, LP and Skog, LE (1992) Revision of Kohleria (Gesneriaceae). Smithsonian Contributions to Botany. Number 79. Washington, DC, Smithsonian Institution Press.CrossRefGoogle Scholar
Lallemand, F, Gaudeul, M, Lambourdière, J, Matsuda, Y, Hashimoto, Y and Selosse, M-A (2016) The elusive predisposition to mycoheterotrophy in Ericaceae. New Phytologist 212, 314319.CrossRefGoogle ScholarPubMed
Lallemand, F, Putseppe, Ü, Lang, A, Luud, A, Courtney, P-E, Palancade, C and Selosse, M-A (2017) Mixotrophy in Pyroleae (Ericaceae) from Estonian boreal forests does not vary with light or tissue age. Annals of Botany 120, 361371.CrossRefGoogle ScholarPubMed
Lammers, TG (2011) Revision of the infrageneric classification of Lobelia L. (Campanulaceae). Annals of the Missouri Botanical Garden 98, 3762.CrossRefGoogle Scholar
Landrum, LR (1986) Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). Flora Neotropica 45, 1178.Google Scholar
Lazarević, M, Siljak-Yakovlev, S, Lazarević, P and Stevanović, V (2013) Pollen and seed morphology of resurrection plants from the genus Ramonda (Gesneriaceae): relationship with ploidy level and relevance to their ecology and identification. Turkish Journal of Botany 37, 872885.CrossRefGoogle Scholar
Leake, JR (1994) Tansley review No. 69. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytologist 127, 171216.CrossRefGoogle Scholar
Leake, JR (2005) Plants parasitic on fungi: unearthing the fungi in myco-heterotrophs and debunking the ‘saprophytic’ plant myth. Mycologist 19, 113122.Google Scholar
Leake, JR, Kendrick, SL, Bidartondo, M and Read, DJ (2004) Symbiotic germination and development of the myco-heterotroph Monotropa hypopitys in nature and its requirement for locally distributed Tricholoma spp. New Phytologist 163, 405423.CrossRefGoogle ScholarPubMed
Lee, Y-I, Yang, C-K and Gebauer, G (2015) The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. Annals of Botany 116, 423435.CrossRefGoogle ScholarPubMed
Leigh, EG Jr. (2010) The evolution of mutualism. Journal of Evolutionary Biology 23, 25072528.CrossRefGoogle ScholarPubMed
Lentz, DL and Dickau, R (2005) Seeds of Central America and southern Mexico. The economic species, vol. 19. Bronx, NY, USA, Memoirs of The New York Botanical Garden.Google Scholar
Liu, C, Qin, S-F and Hu, X-J (2015a) Dormancy and germination of Paraisometrum mileense and their ecological implications. Plant Diversity and Resources 37, 278282.Google Scholar
Liu, SS, Chen, J, Li, S-C, Zeng, X, Meng, Z-X and Guo, S-X (2015b) Comparative transcriptome analysis of genes involved in GA-GID1-DELLA regulatory module in symbiotic and asymbiotic seed germination of Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae). International Journal of Molecular Sciences 16, 3019030203.CrossRefGoogle Scholar
Lu, L, Fritsch, PW, Bush, CM, Dong, L-N, Wang, H and Li, D-Z (2010) Systematic implications of seed coat diversity in Gaultherieae (Ericaceae). Botanical Journal of the Linnean Society 162, 477495.CrossRefGoogle Scholar
Lundell, A, Cousins, SAO and Eriksson, O (2015) Population size and reproduction in the declining endangered forest plant Chimaphila umbellata in Sweden. Folia Geobotanica 40, 1323.CrossRefGoogle Scholar
Maheshwari, SC (1954) The embryology of Wolffia. Phytomorphology 4, 355365.Google Scholar
Maheshwari, SC (1956) The endosperm and embryo of Lemna and systematic position of the Lemnaceae. Phytomorphology 6, 5155.Google Scholar
Maheshwari, SC and Kapil, RN (1964) Morphological and embryological studies on the Lemnaceae. III. The seeds and seedling of Lemna paucicostata. Journal of the Indian Botanical Society 43, 270277.Google Scholar
Martin, AC (1946) The comparative internal morphology of seeds. The American Midland Naturalist 36, 513660.CrossRefGoogle Scholar
Martos, F, Dulomne, M, Pailler, T, Bonfante, P, Faccio, A, Fournel, J, Dubois, MP and Selosse, M-A (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytologist 184, 668681.CrossRefGoogle ScholarPubMed
Massicotte, HB, Melville, LH, Tackaberry, LE and Peterson, RL (2007) Pityopus californicus: structural characteristics of seed and seedling development in a myco-heterotrophic species. Mycorrhiza 17, 647653.CrossRefGoogle Scholar
Matsuda, Y, Shimizu, S, Mori, M, Ito, S-I and Selosse, M-A (2012) Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments. American Journal of Botany 99, 11771188.CrossRefGoogle ScholarPubMed
McMillan, C (1988) The seed reserve of Halophila decipiens Ostenfeld (Hydrocharitaceae) in Panama. Aquatic Botany 31, 177182.CrossRefGoogle Scholar
McNeal, JR, Bennett, JR, Wolfe, AD and Mathews, S (2013) Phylogeny and origins of holoparasites in Orobanchaceae. American Journal of Botany 100, 971983.CrossRefGoogle ScholarPubMed
Mendoza-Urbina, FA, Gutiérrez-Miceli, FA, Ayora-Talavera, TR and Rincón-Rosales, R (2012) Scarification of seeds of Hypericum silenoides Juss. and its effect on germination. Gayana Botanica 69, 16.Google Scholar
Menezes, CG, Gasparino, EC, Baleeiro, PC and Miranda, VFO (2014) Seed morphology of bladderworts: a survey on Utricularia sect. Foliosa and sect. Psyllosperma (Lentibulariaceae) with taxonomic implications. Phytotaxa 167, 173182.CrossRefGoogle Scholar
Mennes, CB, Moerland, MS, Rath, M, Smets, EF and Merckx, VSFT (2015) Evolution of mycoheterotrophy in Polygalaceae: the case of Epirixanthes. American Journal of Botany 102, 598608.CrossRefGoogle ScholarPubMed
Merckx, VSFT (2013) Mycoheterotrophy: an introduction, pp. 117 in Merckx, VSFT (Ed.) Mycoheterotrophy. The biology of plants living on fungi. New York, Springer.Google Scholar
Merckx, VSFT and Freudenstein, JV (2010) Evolution of mycoheterotrophy in plants: a phylogenetic perspective. New Phytologist 185, 605609.CrossRefGoogle ScholarPubMed
Merckx, VSFT, Bidartondo, ML and Hynson, NA (2009) Myco-heterotrophy: when fungi host plants. Annals of Botany 104, 12551261.CrossRefGoogle ScholarPubMed
Merckx, VSFT, Mennes, CB, Peay, KG and Geml, J (2013a) Evolution and diversification, pp. 215244 in Mercks, VSFT (Ed.) Mycoheterotrophy. The biology of plants living on fungi. New York, Springer.Google Scholar
Merckx, VSFT, Freudenstein, JV, Kissling, J, Christenhusz, MJM, Stotler, RE, Crandall-Stotler, B, Wickett, N, Rudall, PJ, Maas-van de Kamer, H and Maas, PJM (2013b) Taxonomy and classification, pp. 19101 in Merckx, VSFT (Ed.) Mycoheterotrophy. The biology of plants living on fungi. New York, Springer.Google Scholar
Michell, MR (1915) The embryo sac and embryo of Striga lutea. Botanical Gazette 59, 124135.CrossRefGoogle Scholar
Mohan Ram, HY and Sehgal, A (2001) Biology of Indian Podostemaceae, pp. 365391 in Rangaswamy, NS (Ed.) Phytomorphology, Golden Jubilee Issue 2001: trends in plant sciences. Delhi, International Society of Plant Morphologists.Google Scholar
Mondoni, A, Probert, R, Rossi, G, Hay, F and Bonomi, C (2008) Habitat-correlated seed germination behaviour in populations of wood anemone (Anemone nemorosa L.) from northern Italy. Seed Science Research 18, 213222.CrossRefGoogle Scholar
Montgomery, FH (1977) Seeds and fruits of plants of eastern Canada and northeastern United States. Toronto, University of Toronto Press.CrossRefGoogle Scholar
Morozowska, M, Czarna, A, Kujawa, M and Jagodzinshi, AM (2011) Seed morphology and endosperm structure of selected species of Primulaceae, Myrsinaceae, and Theophrastaceae and their systematic importance. Plant Systematics and Evolution 291, 159172.CrossRefGoogle Scholar
Mota, LAS and Garcia, QS (2013) Germination patterns and ecological characteristics of Vellozia seeds from high-altitude sites in south-eastern Brazil. Seed Science Research 23, 6774.CrossRefGoogle Scholar
Mukkada, AJ (1969) Some aspects of the morphology, embryology and biology of Terniola zeylanica (Gardner) Tulasne. New Phytologist 68, 11451158.CrossRefGoogle Scholar
Mukkada, AJ and Chopra, RN (1973) Post-fertilization development in Indotristicha ramosissima (Wight) Van Royen. New Phytologist 72, 639646.CrossRefGoogle Scholar
Munro, SL and Linder, HP (1997) The embryology and systematic relationships of Prionium serratum (Juncaceae: Juncales). American Journal of Botany 84, 850860.CrossRefGoogle Scholar
Murley, MR (1951) Seeds of the Cruciferae of northeastern North America. The American Midland Naturalist 46, 181.CrossRefGoogle Scholar
Nagendran, CE, Swamy, BGL and Arekal, GD (1981) A morphogenetic approach to the embryogeny of Indotristica (Podostemaceae). Annals of Botany 47, 799804.CrossRefGoogle Scholar
Nardi, KO, Oriani, A and Scatena, VL (2016) Seed micromorphology and its taxonomic significance to Xyris (Xyridaceae, Poales). Brazilian Journal of Botany 39, 721727.CrossRefGoogle Scholar
Nishii, K, Nagata, T, Wang, C-N and Mőller, M (2012) Light as environmental regulator for germination and macrocotyledon development in Streptocarpus rexii (Gesneriaceae). South African Journal of Botany 81, 5060.CrossRefGoogle Scholar
Norman, EM (2000) Buddlejaceae. Flora Neotropica Monograph 81. New York, The New York Botanical Garden Press.Google Scholar
Novoa, A, Rodríguez, J, López-Nogueira, A, Richardson, DM and González, L (2016) Seed characteristics in Cactaceae: useful diagnostic features for screening species for invasiveness? South African Journal of Botany 105, 6165.CrossRefGoogle Scholar
Ocampo, G and Almeda, F (2013) Seed diversity in the Miconieae (Melastomataceae): morphological characterization and phenetic relationships. Phytotaxa 80, 1129.CrossRefGoogle Scholar
Ogura-Tsujita, Y, Gebauer, G, Hashimoto, T, Umata, H and Yukawa, T (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gaines carbon from saprotrophic Mycena. Proceedings of the Royal Society B 276, 761767.CrossRefGoogle Scholar
Olson, AR (1980) Seed morphology of Monotropa uniflora L. (Ericaceae). American Journal of Botany 67, 968974.CrossRefGoogle Scholar
Olson, AR (1991) Postfertilization changes in ovules of Monotropa uniflora L. (Monotropaceae). American Journal of Botany 78, 99107.CrossRefGoogle Scholar
Olson, AR (1993) Patterns of embryo and endosperm formation in Monotropa hypopitys (Monotropaceae) from North America and western Sweden. American Journal of Botany 80, 839846.CrossRefGoogle Scholar
Oxelman, B, Backlund, MA and Bremer, B (1999) Relationships of the Buddlejaceae s.l. investigated using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL sequence data. Systematic Botany 24, 164182.CrossRefGoogle Scholar
Pace, L (1907) Fertilization in Cypripedium. Botanical Gazette 44, 353374.CrossRefGoogle Scholar
Panigrahi, SG (1986) Seed morphology of Rotala L., Ammannia L., Nesaea Kunth and Hionanthera Fernandes & Diniz (Lythraceae). Botanical Journal of the Linnean Society 93, 389403.CrossRefGoogle Scholar
Partzsch, M (2009) Zur Keimungsbiologie acht ausgewählter ephemerer Xerothermrasenarten. Hercynia N.F 42, 93100.Google Scholar
Patil, RT and Prasad, VP (2016) Achene morphology and its taxonomic significance in Cyperaceae of Goa, India: 1. Genus Fimbristylis. Indian Journal of Plant Sciences 5, 8796.Google Scholar
Penzig, O (1901) Beitrage zur Kenntnis der Gattung Epirihizanthes BL. Annales du Jardin Botanique de Buitenzorg 17, 142170. + plates XX-XXVI.Google Scholar
Philbrick, CT (1984) Aspects of floral biology, breeding system, and seed and seedling biology in Podostemum ceratophyllum (Podostemaceae). Systematic Botany 9, 166174.CrossRefGoogle Scholar
Philbrick, CT and Novelo, A (1997) Ovule number, seed number and seed size in Mexican and North American species of Podostemaceae. Aquatic Botany 57, 183200.CrossRefGoogle Scholar
Philbrick, CT and Novelo, A (2004) Monograph of Podostemum (Podostemaceae). Systematic Botany Monographs 70, 1106.CrossRefGoogle Scholar
Plachno, BJ and Świątek, P (2010) Unusual embryo structure in viviparous Utricularia nelumbifolia, with remarks on embryo evolution in genus Utricularia. Protoplasma 239, 6980.CrossRefGoogle ScholarPubMed
Popiela, A, Łysko, A, Białecka, B, Bihun, MM, Sramkó, W, Wieczorek, A and Molnár, VA (2017) Seed morphometric characteristics of European species of Elatine (Elatinaceae). PeerJ 5, e3300.CrossRefGoogle Scholar
Press, MC, Shah, N, Tuohy, JM and Stewart, GR (1987) Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiology 85, 11431145.CrossRefGoogle Scholar
Puff, C (1978) Testa structure of the ‘dust seeds’ of hemi- and holoparasitic Scrophulariaceae. Proceedings of Electron Microscopy Society of Southern Africa 8, 1170118.Google Scholar
Pyykkö, M (1968) Embryological and anatomical studies on Finnish species of the Pyrolaceae. Annales Botanici Fennica 5, 153165.Google Scholar
Qaiser, M (1987) Studies in the seed morphology of the family Tamaricaceae from Pakistan. Botanical Journal of the Linnean Society 94, 469484.CrossRefGoogle Scholar
Rajbhandary, S and Shrestha, KK (2010) Taxonomic and ecological significance of seed micromorphology in Himalayan begonias: SEM analysis. Pakistan Journal of Botany 42, 135154.Google Scholar
Robbrecht, E (1988) Tropical woody Rubiaceae. Characteristic features and progressions. Contributions to a new subfamilial classification. Opera Botanica Belgica 1, 1271.Google Scholar
Rose, JP and Freudenstein, JV (2014) Cryptic and overlooked: species delimitation in the mycoheterotrophic Monotropsis (Ericaceae: Monotropoideae). Systematic Botany 39, 578593.CrossRefGoogle Scholar
Rudall, PJ and Sajo, MG (1999) Systematic position of Xyris: flower and seed anatomy. International Journal of Plant Sciences 160, 795808.CrossRefGoogle Scholar
Rudall, PJ, Eldridge, T, Trat, J, Ramsay, MM, Tuckett, RE, Smith, SY, Collinson, ME, Remizowa, MV and Sokoloff, DD (2009) Seed fertilization, development, and germination in Hydatellaceae (Nymphaeales): implications for endosperm evolution in early angiosperms. American Journal of Botany 96, 15811593.CrossRefGoogle ScholarPubMed
Rutishauser, R (2016) Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification. Annals of Botany 117, 811832.CrossRefGoogle ScholarPubMed
Sánchez, AM, Azcárate, FM, Arqueros, L and Peco, B (2002) Volumen y dimensiones como predictors del epso de semilla de especies herbáceas del centro de la Península Ibérica. Anales del Jardin Botanica de Madrid 59, 249262.Google Scholar
Sánchez-Coronado, AM, Olvera, C, Márquez-Guzmán, J, Macías-Rubalcava, ML, Orozco, S, Anaya, AL and Orozco-Segovia, A (2015) Complex dormancy in the seeds of Hypericum philonotis. Flora 213, 3239.CrossRefGoogle Scholar
Segarra, JG and Mateu, I (2001) Seed morphology of Linaria species from eastern Spain: identification of species and taxonomic implications. Botanical Journal of the Linnean Society 135, 375389.CrossRefGoogle Scholar
Sehgal, A, Mohan Ram, HY and Bhatt, JR (1993) In vitro germination, growth, morphogenesis and flowering of an aquatic angiosperm, Polypleurum stylosum (Podostemaceae). Aquatic Botany 45, 269283.CrossRefGoogle Scholar
Selosse, M-A and Roy, M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends in Plant Science 14, 6470.CrossRefGoogle ScholarPubMed
Selosse, M-A, Martos, F, Perry, BA, Padamsee, M, Roy, M and Pailler, T (2010) Saprophytic fungal mycorrhizal symbiosis in achlorophyllous orchids. Plant Signaling & Behavior 5, 349353.CrossRefGoogle ScholarPubMed
Selosse, M-A, Bocayuva, MF and Kasuya, MCM (2016) Mixotrophy in mycorrhizal plants: extracting C from mycorrhizal networks, pp. 451471 in Martin, F (Ed.) Molecular mycorrhizal symbiosis. New York, John Wiley & Sons, Inc.CrossRefGoogle Scholar
Shah, SZ, Rasheed, A, Bilquees, G, Khan, MA, Nielsen, BL and Hameed, A (2020) Maternal salinity improves yield, size and stress tolerance of Suaeda fruitcosa seeds. Journal of Arid Land 12, 283293.CrossRefGoogle Scholar
Shetler, SG and Morin, NR (1986) Seed morphology in North American Campanulaceae. Annals of the Missouri Botanical Garden 73, 653688.CrossRefGoogle Scholar
Shutoh, K, Kaneko, S, Suetsugu, K, Naito, YI and Kurosawa, T (2016) Variation in vegetative morphology tracks the complex genetic diversification of the mycoheterotrophic species Pyrola japonica sensu lato. American Journal of Botany 103, 16181629.CrossRefGoogle ScholarPubMed
Shutoh, K, Tajima, Y, Matsubayashi, J, Tayasu, I, Kato, S, Shiga, T and Suetsugu, K (2020) Evidence for newly discovered albino mutants in a pyroloid: implication for the nutritional mode in the genus Pyrola. American Journal of Botany 107, 650657.CrossRefGoogle Scholar
Siddiqui, SA (1978) Studies in the Lentibulariaceae. 9. Pollination, fertilization, endosperm, embryo and seed in Utricularia dichotoma Labill. Botanische Jahrbucher fur Systematik Pflanzengeschichte und Pflansengeographie 100, 237245.Google Scholar
Skog, LE (1976) A study of the tribe Gesnerieae, with a revision of Gesneria (Gesneriaceae: Gesnerioideae). Smithsonian Contributions to Botany. Number 29. Washington, DC, Smithsonian Institution Press.CrossRefGoogle Scholar
Sokoloff, DD, Remizowa, MV, Macfarland, TD and Rudall, PJ (2008a) Classification of the early-divergent angiosperm family Hydatellaceae: one genus instead of two, four new species and sexual dimorphism in dioecious taxa. Taxon 57, 179200.Google Scholar
Sokoloff, DD, Remizowa, MV, Macfarland, TD, Yoder, SR and Rudall, PJ (2008b) Hydatellaceae: a historical review of systematics and ecology. Rheedia 21, 115138.Google Scholar
Sokoloff, DD, Remizowa, MV, Beer, AS, Yadav, SR, Macfarland, TD, Ramsay, MM and Rudall, PJ (2013) Impact of spatial constraints during seed germination on the evolution of angiosperm cotyledons: a case study from tropical Hydatellaceae (Nymphaeales). American Journal of Botany 100, 824843.CrossRefGoogle Scholar
Sokoloff, DD, Remizowa, MV, Conran, JG, Macfarland, TD, Ramsay, MM and Rudall, PJ (2014) Embryo and seedling morphology in Trithuria lanterna (Hydatellaceae, Nymphaeales): new data for infrafamilial systematics and a novel type of syncotyly. Botanical Journal of the Linnean Society 174, 551573.CrossRefGoogle Scholar
Soliman, MSA, El-Tarras, AS and El-Awady, MA (2010) Seed exomorphic characters of some taxa from Saudi Arabia. Journal of American Science 6, 906910.Google Scholar
Sridith, K (2007) Notes on the genus Argostemma (Rubiaceae) of the Malay Peninsula and peninsular Thailand. Blumea 52, 367377.CrossRefGoogle Scholar
Suetsugu, K (2018) Independent recruitment of a novel seed dispersal system by camel crickets in achlorophyllour plants. New Phytologist 217, 828835.CrossRefGoogle ScholarPubMed
Sulaiman, IM (1995) Scanning electron microscopic studies on seed coat patterns of five endangered Himalayan species of Meconopsis (Papaveraceae). Annals of Botany 76, 323326.CrossRefGoogle Scholar
Susandarini, R, Collins, GG, Lowrie, A and Conran, JG (2002) Morphological variation within the Drosera indica (Droseraceae) complex in northern Australia. Australian Journal of Botany 50, 207214.CrossRefGoogle Scholar
Swamy, BGL (1949) Embryological studies in the Orchidaceae. II. Embryology. The American Midland Naturalist 41, 202232.CrossRefGoogle Scholar
Swamy, KK, Kuma, HNK, Ramakrishna, TM and Ramaswamy, SN (2004) Studies on seed morphology of epiphytic orchids from Western Ghats of Karnataka. Taiwania 49, 124140.Google Scholar
Sweedman, L (2006) Australian seeds: a photographic guide, pp. 67172 in Sweedman, L and Merritt, D (Eds) Australian seeds. A guide to their collection, identification and biology. Collingwood, CSIRO Publishing.CrossRefGoogle Scholar
Szkudlarz, P (2001) Morphological and anatomical structure of seeds in the family Ericaceae. Biological Bulletin of Poznan 38, 113132.Google Scholar
Szkudlarz, P (2002) Morphological and anatomical structure of seeds and fruits in Phyllodoce coerulea and Loiseleuria procumbens (Ericaceae). Biological Letters 39, 36.Google Scholar
Szkudlarz, P (2008) Some notes on the morphology and anatomy of seeds of two similar heathers, Erica carnea L. and Erica erigena R. Ross. Dendrobiology 59, 5155.Google Scholar
Szkudlarz, P and Celka, Z (2016) Morphological characters of the seed coat in selected species of the genus Hypericum L. and their taxonomic value. Biodiversity Research and Conservation 44, 19.CrossRefGoogle Scholar
Takahashi, H (1993) Seed morphology and its systematic implications in Pyroloideae (Ericaceae). International Journal of Plant Sciences 154, 175186.CrossRefGoogle Scholar
Tantawy, ME, Khalifa, SF, Hassan, SA and Al-Rabiai, GT (2004) Seed exomorphic characters of some Brassicaceae (LM and SEM study). International Journal of Agriculture & Biology 6, 821830.Google Scholar
Taylor, P (1989) The genus Utricularia – a taxonomic monograph. Kew Bulletin additional series XIV. London, Royal Botanic Gardens, Kew.Google Scholar
Tedersoo, L and Brundrett, MC (2017) Evolution of ectomycorrhizal symbiosis in plants. Ecological Studies 230, 407467.CrossRefGoogle Scholar
Tedersoo, L, Pellet, P, Köljalg, U and Selosse, M-A (2007) Parallel evolution paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151, 206217.CrossRefGoogle ScholarPubMed
Terrell, EE, Lewis, WH, Robinson, H and Nowicke, JW (1986) Phylogenetic implications of diverse seed types, chromosome numbers, and pollen morphology in Houstonia. American Journal of Botany 73, 103115.CrossRefGoogle ScholarPubMed
Teryokhin, EW (2001) The origin of ‘dust’ seeds in parasitic and mycoparasitic angiosperms: a hypothesis for symbioses. Beiträge zur Biologie der Pflanzen 72, 381397.Google Scholar
Teryokhin, EW (2006) Reduced and undifferentiated embryos. pp. 281291 in Batygina, TB (Ed.) Embryology of flowering plants. Terminology and concepts, Vol. 2: Seed. Enfield, NH, Science Publishers.Google Scholar
Teryokhin, ES and Nikiticheva, ZI (1982) Biology and evolution of embryo and endosperm in parasitic flowering plants. Phytomorphology 32, 335339.Google Scholar
Těšitel, J, Plavcová, L and Cameron, DD (2010) Interactions between hemiparasitic plants and their hosts. Plant Signaling & Behavior 5, 10721076.CrossRefGoogle ScholarPubMed
Thieret, JW (1966) Seeds of some United States Phytolaccaceae and Aizoaceae. Sida 2, 352360.Google Scholar
Tiagi, B (1956) A contribution to the embryology of Striga orobanchoides Benth. and Striga euphrasioides Benth. Bulletin of the Torrey Botanical Club 83, 154170.CrossRefGoogle Scholar
Tillich, H-J, Tuckett, R and Facher, E (2007) Do Hytellaceae belong to the monocotyledons or basal angiosperms? Evidence from seedling morphology. Willdenowia 37, 399406.Google Scholar
Titova, GE (2006) Variations in cotyledon apparatus development, pp. 230258 in Batygina, TB (Ed.), Embryology of flowering plants. Terminology and concepts. Vol. 2: Seed. Enfield, NH, Science Publishers.Google Scholar
Tsukaya, H, Suleiman, M and Okada, H (2016) A new species of Epirixanthes (Polygalaceae) from Ibmbak, Sabah, Borneo. Phytotaxa 266, 146150.CrossRefGoogle Scholar
Tsutsumi, C, Yukawa, T, Lee, NS, Lee, CS and Kato, M (2007) Phylogeny and comparative seed morphology of epiphytic and terrestrial species of Liparis (Orchidaceae) in Japan. Journal of Plant Research 120, 405412.CrossRefGoogle ScholarPubMed
Tuckett, RE, Merritt, DJ, Rudall, PJ, Hay, F, Hopper, SD, Baskin, CC, Baskin, JM, Tratt, J and Dixon, KW (2010) A new type of specialized morphophysiological dormancy and seed storage behavior in Hydatellaceae, an early-divergent angiosperm family. Annals of Botany 105, 10531061.CrossRefGoogle ScholarPubMed
Uniyal, PL and Mohan Ram, HY (1996) In vitro germination and seedling development of Dalzellia zeylanica (Gardner) Wight (Podostemaceae). Aquatic Botany 54, 5971.CrossRefGoogle Scholar
Uniyal, PL and Mohan Ram, HY (2001) Studies on the morphology and in vitro seed germination in Willisia selaginoides (Bedd.) Warm. ex Willis (Podostemaceae). Flora 196, 370380.CrossRefGoogle Scholar
Valadares, RBS, Perotto, S, Santos, EC and Lambais, MR (2014) Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza 24, 349360.CrossRefGoogle ScholarPubMed
Vandelook, F and Van Assche, JA (2009) Temperature conditions control embryo growth and seed germination of Corydalis solida (L.) Clairv., a temperate forest spring geophyte. Plant Biology 11, 899906.CrossRefGoogle ScholarPubMed
Verkerke, W (1985) Ovules and seeds of the Polygalaceae. Journal of the Arnold Arboretum 66, 353394.Google Scholar
Verma, J, Kusum, KT, Thakus, K, Sembi, JK and Vij, SP (2012) Study on seed morphology of seven threatened Himalayan orchids exhibiting varied life modes. Acta Botanica Gallica: Botany Letters 159, 443449.CrossRefGoogle Scholar
Verma, J, Sharma, K, Thakur, K, Sembi, JK and Vij, SP (2014) Study on seed morphometry of some threatened Western Himalayan orchids. Turkish Journal of Botany 38, 234251.CrossRefGoogle Scholar
Vidyashankari, B (1988) Seed germination and seedling morphology in Indotristicha ramosissima (Podostemaceae) grown in vitro. Current Science 57, 369373.Google Scholar
Vidyashankari, B and Mohan Ram, HY (1987) In vitro germination and origin of thallus in Griffithella hookeriana (Podostemaceae). Aquatic Botany 28, 161169.CrossRefGoogle Scholar
Vinogradova, TN and Andronova, EV (2002) Development of orchid seeds and seedlings, pp. 167234 in Kull, T and Arditt, J (Eds) Orchid biology: reviews and perspectives, VIII. Dordrecht, Kluwer Academic Publishers.CrossRefGoogle Scholar
Viswanathan, MB, Manikandan, U and Tangavelou, AC (2005) A new species of Neurocalyx (Rubiaceae) from peninsular India. Nordic Journal of Botany 23, 389394.CrossRefGoogle Scholar
Wagner, WL, Weller, SG and Sakai, A (2005) Monograph of Schiedea (Caryophyllaceae – Alsinoideae). Systematic Botany Monograph 72, 1169.Google Scholar
Wallace, GD (1975) Studies of the Monotropoideae (Ericaceae): taxonomy and distribution. The Wasmann Journal of Biology 33, 188.Google Scholar
Warcup, JH (1988) Mycorrhizal associations and seedling development in Australian Lobelioideae (Campanulaceae). Australian Journal of Botany 36, 461472.CrossRefGoogle Scholar
Watanabe, H, Ando, T, Nishino, E, Kokubun, H, Tsukamoto, T, Hashimoto, G and Marchesi, E (1999) Three groups of species of Petunia sensu Jussieu (Solanaceae) inferred from the intact seed morphology. American Journal of Botany 86, 302305.CrossRefGoogle Scholar
Werker, E (1997) Seed anatomy. Berlin, Gebrüder Borntraeger.Google Scholar
Whitlock, BA, Silver, J and Prince, JS (2010) Seed coat morphology in Gentianopsis (Gentianaceae). Rhodora 112, 5879.CrossRefGoogle Scholar
Willis, CG, Baskin, CC, Baskin, JM, Auld, JR, Venable, DL, Cavender-Bares, J, Donohue, K, Rubio de Casas, R and The NESCent Germination Working Group. (2014) The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist 203, 300309.CrossRefGoogle Scholar
Wirz, H (1910) Beitrage zur Entwicklungsgeschichte von Sciaphila spec. und von Epirrhizanthes elongata Bl. Flora 101, 395446.Google Scholar
Yam, TW, Yeung, EC, Ye, X-L, Zee, S-Y and Arditti, J (2002) Orchid embryos, pp. 287385 in Kull, T and Arditt, J (Eds) Orchid biology: reviews and perspectives, VIII. Dordrecht, Kluwer Academic Publishers.CrossRefGoogle Scholar
Zech, JC and Wujek, DE (1990) Scanning electron microscopy of seeds in the taxonomy of Michigan Juncus. The Michigan Botanist 29, 318.Google Scholar
Zimmer, K, Hynson, NA, Gebauer, G, Allen, EB, Allen, MF and Read, DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytologist 175, 166175.CrossRefGoogle ScholarPubMed
Zona, S, Davis, P, Gunathilake, LAAH, Prince, J and Horn, JW (2012) Seeds of Eriocaulaceae of the United States and Canada. Castanea 77, 3745.CrossRefGoogle Scholar